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Abstract

Recent advances in modeling thermodynamic and transport properties of electrolyte solutions are reviewed.
In particular, attention is focused on mixed-solvent electrolyte models, equations of state for high-temperature
and supercritical electrolyte systems and transport property models for multicomponent, concentrated solutions.
The models are analyzed with respect to their capability of computing thermodynamic and transport properties in
wide ranges of conditions and composition (i.e. for aqueous or mixed-solvent, dilute or concentrated solutions).
Various frameworks for the development of electrolyte models are discussed, i.e. models that treat electrolytes on
a completely dissociated or undissociated basis and those that take into account the speciation of solutions. A new
mixed-solvent electrolyte model is developed for the simultaneous calculation of speciation and phase equilibria. The
role of speciation is discussed with respect to the representation of the thermodynamic properties of mixed-solvent
electrolyte solutions and diffusion coefficients in aqueous systems. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Thermodynamic and transport properties of electrolyte solutions are important for a variety of appli-
cations in the chemical process industries. Electrolytes are involved in numerous processes including:

1. Environmental applications such as gas treatment, wastewater treatment or chemical waste disposal;

2. Separation processes such as solution crystallization, extractive distillation, seawater desalination or
bioseparations;

3. Electrochemical processes—both undesirable phenomena such as corrosion and industrial processe
such as electrolysis;

4. Supercritical technology, including destruction of hazardous agents and synthesis in supercritical
fluids;
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5. Production of energy sources, including scaling in production wells, utilization of geothermal energy
or inhibition of gas hydrate formation;
6. Hydrometallurgical processes.

These applications require models that cover wide ranges of chemical composition (aqueous or mixed-
solvent, dilute or concentrated solutions), conditions (ranging from ambient temperatures to supercritical
conditions) and physical phenomena that are of interest (e.g. phase equilibria, acid—base equilibria,
transport of species to a reacting interface, etc.). Therefore, development of models for electrolyte system:
continues to be an important subject of research.

Several excellent reviews of electrolyte solution models are available in the literature. Empirical and
semi-empirical models were reviewed by Zemaitis et al. [1], Renon [2], Pitzer [3], Rafal et al. [4] and
Loehe and Donohue [5]. Theoretical fundamentals were reviewed by Friedman [6], Conway [7], Mazo
and Mou [8] and Loehe and Donohue [5]. These works provide a detailed review of the thermodynamics
of aqueous electrolyte systems at temperatures substantially below the critical region. Therefore, we focus
in this study on other, less mature, research areas within the realm of electrolyte solutions. These area
include:

1. Models for mixed-solvent electrolyte solutions;
2. Models for supercritical and high-temperature systems involving electrolytes, and
3. Transport property models for multicomponent, concentrated systems.

In these areas, our understanding of physical principles is less advanced than in the area of thermo
dynamic properties of agueous electrolytes at “normal” conditions. However, substantial progress has
recently been achieved and many practical, engineering-oriented models are currently under develop
ment. In this work, emphasis is put on models that are suitable for the simulation of systems encounterec
in industrial practice. Such models are applicable to multicomponent mixtures over wide concentration
and temperature ranges and can be parameterized using available experimental information.

2. Treatment of electrolyte solution chemistry

Before we proceed to analyze selected electrolyte solution models, it is worthwhile to classify them
with respect to the method of treating the solution chemistry. Here, the term “solution chemistry” encom-
passes the chemical equilibria that describe ionic dissociation, ion pair formation, hydrolysis of metal
ions, formation of metal-ligand complexes, acid—base reactions, disproportionation reactions, etc. The
available electrolyte models can be grouped in three classes, i.e.

1. Models that treat electrolytes on an undissociated basis;
2. Models that assume complete dissociation of all electrolytes into constituent ions;
3. Speciation-based models, which explicitly treat the solution chemistry.

The models that treat electrolytes as undissociated components are analogous to nonelectrolyte mixtur
models. They are particularly suitable for supercritical and high-temperature systems, in which ion pairs
predominate. However, this approach is also used for more typical electrolyte systems at moderate condi
tions [9-11]. The models that assume complete dissociation are the largest class of models for electrolyte:
at typical conditions. Compared with the models that treat electrolytes as undissociated or completely
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associated, the speciation-based models are more computationally demanding. This is due to the fact
that phase equilibrium calculations have to be accompanied by solving chemical equilibria whenever
speciation-based models are used. The details of such calculations have been reviewed by Rafal et al.
[4]. Also, speciation-based models require the creation of extensive databases containing the properties
of various species. In many cases, individual species can be clearly defined and experimentally verified
in relatively dilute solutions. At high concentrations, the chemical identity of individual species (e.g. ion
pairs or complexes) becomes ambiguous because a given ion has multiple neighbors of opposite sign
and, thus, many species lose their distinct chemical character. This becomes particularly evident in the
limit of fused salts, which are characterized by an alternating charge pattern [12] rather than the presence
of distinct species. Therefore, the application of speciation models to concentrated solutions requires a
careful analysis to separate the chemical effects from physical nonideality effects.

When comparing speciation-based models with those that neglect speciation, itis worthwhile to consider
the application of the models. If the applications are limited to computing phase equilibria (especially
VLE), comparable results can be obtained with models that belong to various classes. For example, the
overall activity coefficients and VLE of many transition metal halide solutions, which show appreciable
complexation, can be reproduced using Pitzer’'s ion-interaction approach [3] without taking speciation into
account. The advantages of speciation-based models become obvious when other properties are of interes
For numerous applications for which pH is important, speciation models are necessary. The distribution
of species (including free and complexed ions) is important for modeling transport phenomena in a variety
of electrochemical process (e.g. electrolysis, corrosion) and in natural environments. In multicomponent
systems with complicated solution chemistry, speciation is also important for the accurate prediction of
solid solubility. This is due to the fact that the distribution of species in multicomponent systems may
be different from that in simple single-salt systems, which may in turn affect the solubility and other
properties. The knowledge of speciation is also important when some species (e.g. Cr(VI)) are harmful
to the environment whereas other species of the same element are relatively benign (e.g. Cr(lll)).

In the next section, we briefly review selected models for mixed-solvent electrolyte solutions and outline
a new model that was specifically designed to perform speciation calculations.

3. Mixed-solvent electrolyte solutions

Development of thermodynamic models for mixed-solvent electrolyte systems was an active area of
research during the last three decades. In general, these models contain several contributions that define
the excess Gibbs energy:

1. Along-range force contribution that accounts for electrostatic interactions between ions at high elec-
trolyte dilutions. This contribution is generally represented by the Debye—Hiickel [13] or mean spher-
ical approximation theories [14-17].

2. Ashort-range interaction contribution that includes interactions between all species. Models originally
developed for nonelectrolyte solutions, such as NRTL, UNIQUAC, and UNIFAC, have been used for
this purpose.

3. The Born model, which represents the electrostatic contribution to ion solvation.

Other approaches include using equations of state based on the Helmholtz energy [18,19,94] rather
than the excess Gibbs energy. Table 1 compares some of the thermodynamic models developed in recen



Table 1
Summary of representative activity coefficient models for mixed-solvent electrolyte solutions
Terms® Equilibria Reference state” Solution chemistry Features References
NRTL VLE (LLE) Yu—> lasx, > 1 Undissociated No LR contribution [21]
DH + UNIQUAC VLE vi —> lasx;, > 1 & x; — 0; Complete dissociation Fixed ¢; concentration- [27]
ys—> lasx;, — 1 dependent UNIQUAC
parameters
DH + UNIQUAC VLE yi—~>lasx,—>1&1— 0; Complete dissociation Concentration-dependent [28]
ys—> lasx, —> 1 UNIQUAC parameters
DH + UNIFAC VLE yi—>lasxy, > 1&1— 0; Complete dissociation [24]
ys— lasx, —> 1
UNIFAC VLE, LLE yu—> lasx, > 1 Undissociated No LR contribution [11]
DH + MR + UNIQUAC VLE yir—> lasx, > 1&I1—0; Complete dissociation Concentration-dependent [29]
ys— lasx, —> 1 MR parameters
DH + VL + IS VLE, LLE y1— lasx;, > 1 &x; — 0; Complete dissociation [22]
ys— lasxy, —> 1
PDH + Born + BG + NRTL LLE yi—> lasxy, - 1 &x; — 0 Speciation Fixed ¢ [20]
ys— lasx, — 1
NRTL VLE, SLE Yu— lasx, > 1 Undissociated No LR contribution [9,10]
DH + MR + UNIFAC VLE yi—>lasx, > 1&1— 0; Complete dissociation Concentration-dependent [25]
ys— lasx,— 1 MR parameters; group
interaction parameters in
both MR and UNIFAC
DH + UNIQUAC VLE, SLE vk~ lasx, = 1 &x — 0; Speciation Using properties of pure [23]
Yw— lasxy > 1 water in DH term; also
included H* data
MSA (GD) VLE yg— lasx, —> 1 & xq — 0; Complete dissociation [30]
ys—> lasx, —> 1
MSA + Born + UNIFAC (GD) VLE yk > lasxy, > 1&x — 0; Speciation [26]

Yw—> lasxy — 1

* DH = Debye-Hiickel, PDH = Pitzer—-Debye—Hiickel, MR = middle-range, VL = Van Laar, IS = ion-solvation, BG = Bronsted—Guggemheim, GD =

Gibbs—Duhem integration.

T = jon; st = salt; s = solvent; w = water; u = undissociated species (including solvent); k = all species except water.
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years. These models have been generally used for the representation of activities and phase equilibria.
Some of these models have been demonstrated to reproduce not only vapor—liquid equilibrium, but also
liquid-liquid equilibrium [11,20-22] and solid—liquid equilibrium [9,10,23] in mixed-solvent electrolyte
systems. Group contributions were used in some models [11,24-26] to enhance their predictive capability.

Most of the mixed-solvent electrolyte models have been developed on the assumption of complete
dissociation of the electrolyte [22,24,25,27-31], or on an undissociated basis [9-11,21,31]. Chemical
equilibrium has been treated in some of the models [20,23,26] for selected systems. In many models, the
applicability range is limited by the selection of the reference state. In general, a reference state based
on the unsymmetrical convention, i.e. infinite dilution in water, limits the applicability of the model to
water-dominated systems. The use of different reference states for the solvents and for ions may also
cause inconsistency in LLE calculations [11] unless the standard-state of the ionic species is properly
selected [20,22].

Several authors have observed that the effect of long-range electrostatic interactions on phase equilibria
is negligible at concentrations beyond near-infinite dilution. Therefore, Mock et al. [21], Kolker and de
Pablo [9,10], and Dahl and Macedo [11] neglected the long-range interaction contribution in their models
and adopted a symmetrical reference state for all species. These models do not show the correct limiting
behavior according to Debye—Hiickel theory and are not suitable for chemical equilibrium calculations
because the electrolyte is assumed to be undissociated.

The available mixed-solvent electrolyte models have not been applied to systems that are continuously
miscible from infinite dilution to the fused salt limit. The fused salt limit is becoming increasingly
important in view of the interest in room-temperature ionic solvents. Thus, it is desirable to extend the
definition of mixed-solvent electrolytes to include liquid salts and to develop thermodynamic models that
are capable of reaching this limit.

In the development of mixed-solvent electrolyte models, an important consistency problem arises when
a Debye—Huckel expression, originally derived within the McMillan—Mayer (MM) framework, is added
to a local composition model derived from the Lewis—Randall (LR) framework [32]. The difference be-
tween the activity coefficients, when recalculated from one scale (MM) to another (LR) can be as large
as 20% or more for some common salts [33]. When a model is developed by combining a Debye—Hiickel
term with an excess Gibbs energy model in the LR framework, corrections for scale conversion are
necessary to maintain thermodynamic consistency. Mathematical transformations for converting thermo-
dynamic quantities between the MM and LR scales for single- and multi-solvent electrolyte solutions
have been developed by Friedman [93], Pailthorpe et al. [34], de Cardoso and O’Connell [32], Cabezas
and O’Connell [35], Haynes and Newman [36] and Lee [33]. A Debye—Huickel formalism that is suitable
for use in the Lewis—Randall framework has been introduced in the models developed by Macedo et al.
[28], Kikic et al. [24], Li et al. [29], Yan et al. [25], and Zerres and Prausnitz [22].

In this study, we present an outline of a new mixed-solvent electrolyte model that is designed to yield
comprehensive speciation results in addition to predicting phase equilibria and is valid for systems ranging
from infinitely dilute with respect to electrolytes to fused salts. In this model, an expression for the excess
Gibbs energy is constructed as a sum of three terms

G* _ G Ghe  G% 0
RT RT RT RT
where Gy represents the contribution of long-range electrostatic interact®@gsjs the short-range
interaction contribution and an additional (middle-range) téxfly, accounts for ionic interactions that
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are notincluded in the long-range term. In order to cover the entire concentration range for mixed-solvent
electrolyte systems (i.e. from a pure solvent to a pure solute, e.g. a fused salt), the new model has bee
constructed on mole-fraction basis and has been normalized using the symmetrical reference state wher
y; = 1 asx; — 1 for any species. It is obvious that such a reference state is hypothetical for ions. The
long-range interactions are represented by the excess function originally developed by Debye and Hiicke
[13] using the charging process approach [37]:
BH Kk 22
RT = 3skT%:ani e‘t(ka) 2)

wherex andz(xa) are defined by

2 2
(2 — e Y i xizf
gockTv

whereais the distance of closest approach between two ions and is set to be 4As¢hd molar volume
of the mixture. For a realistic representation of the properties of mixed-solvent electrolyte systems, the
effect of composition on the dielectric constant must be taken into account. Theegfemlculated from
a general model for the composition dependence of the dielectric constant [38]. Eq. (2) and the resulting
expressions for activity coefficients are consistent with those derived for use within the Lewis—Randall
framework [22,32].

For the “middle-range” ionic interaction term, a second virial coefficient-type expression is used

% = — (Zl’l[) ZZXinBij (4)
i i

where the interaction parametgy;, is expressed as a function of temperature and ionic strength:

Bi(1,. T) = b + (b + bPT) expl—(I, + a2 + b> T 5)

2
t(ka) = i |:In(1+ ka) —ka + (ka) ]
(ka)®

®3)

whereb(” throughb® are adjustable parameters amds set to be 0.01. The short-range interactions are
represented by the UNIQUAC local composition model [39]. In most cases, the UNIQUAC parameters
are temperature-dependent.

For modeling speciation, accurate representation of chemical potentials of species that participate in
chemical reactions is of utmost importance. In aqueous systems, chemical potentials at infinite dilution
can be calculated using extensive databases of thermochemical properties (cf. a review by Rafal et al
[4]). For mixed-solvent systems, the correctness of chemical potentials is ensured by combining aqueou:
standard-state properties with accurately predicted Gibbs energies of transfer. Thus, the activity coefficien
model must be constrained to reproduce the Gibbs energies of transfer. The Gibbs energy of transfer o
ioni from solvent R to solvent S on molal concentratian) cale is defined as

AyGIR = S = ;"™ — ™R (6)

1

whereu 2™ and u™R are the standard-state (infinite dilution) chemical potentials of iarsolvent

S and R, respectively. Through appropriate thermodynamic manipulation, the standard-state chemica
potential of ioni in solvent S can be expressed as

1000
MiO,m,S — M?,m‘HgO + RTIn (

) + RTIn(x; M%) — RTInm® (7)
H,O
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wherey > "H20

is the standard-state (infinite dilution) chemical potential ofiitlmwater;miS is the mo-
lality of ioni in solvent S, anq&ix’Hzo’S is the activity coefficient of iomin solvent S in the unsymmetrical,
mole-fraction based convention, which can be calculated using the mixed-solvent electrolyte model. By

substituting Egs. (6) and (7), a general expression is obtained:
y.X,Hzo,SmR
AMﬁ@—»Sm=Rﬂn<L———L> (8)

At infinite dilution, the Gibbs energy of transfer for an electrolyteAg from solvent R to S can be
obtained by adding those of its constituent cation and anion.

When performing speciation calculations, the activity coefficient model is used in conjunction with
standard-state properties of species. In the available databases [4], these properties are defined for infinite
dilution in water on the molality basis. Therefore, for chemical equilibrium calculations, the values of
activity coefficients based on the symmetrical reference state must be converted to those on the unsymmet-
rical scale. For this purpose, the mole fraction-based activity coefficient of speici¢ése symmetrical
reference statey, is first converted to that based on the unsymmetrical reference state, i.e. at infinite
dilution in water,y>>", i.e.

Ny =Inyd — lim Iny} 9)
)Ck—>o

xp—1

where lim,, .oy} is the value of the symmetrical activity coefficient at infinite dilution in water. At

xy—1

the same time, the molality-based standard-state chemical potesfti&t’ can be converted to a mole

00,x,0

fraction-based quantity, ", by

1000
Mf*°:M$””+Rﬂn(Er) (10)

w

1000

100 -

Vapor Pressure, kPa
ey
o

Fig. 1. Computation of vapor pressures for the LIN®NOz;—H,O system as a function of mole fraction of water. The solid
symbols are from [77] and the open symbols are from [78,79].
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whereM,, is the molar weight of water. The unsymmetrical activity coefficient based on Eq. (9) can then
be used with the standard-state chemical potential calculated using Eq. (10) for chemical equilibrium
calculations. It should be noted that this procedure remains valid even when the system of interest does
not contain any water.

The model outlined above is applicable to various classes of systems including (1) aqueous solutions
from infinitely dilute to fused salts, (2) electrolytes in mixed organic-water solvents up to solid saturation
and (3) partially or fully ionizable systems (e.g. various acids) in the whole concentration rapge=(

0-1) in water and in organic solvents. For example, Fig. 1 shows the representation of vapor—liquid
equilibria for the LINQ—-KNO3;—H,O system over a wide concentration range from pure water to almost
the fused salt limit. Solid solubility is also accurately reproduced for this and other systems. Results of
modeling speciation effects are shown in Fig. 2 for the acetic acid—water—ethanol system. The dissociation
constant of acetic acid in ethanol-water mixtures, which varies as a function of composition by several
orders of magnitude, can be very well reproduced as shown in Fig. 2. Fig. 2 also shows the distribution of
species in this system. Such results are particularly useful when the acidity of mixed-solvent systems is of

12.0
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4.0 ; ‘ ‘ T
00 02 04 06 08 1.0

x-Ethanol
100

80 | .

60 -

Mole %

40 {4 0000 - %~HAc

20 -

0

00 02 04 06 08 1.0
x-Ethanol

Fig. 2. Speciation of acetic acid in ethanol-water mixtures at 298 K. The upper diagram shows experimental and calculated
dissociation constant of acetic acid. The symbols denote the data of Panichajakul and Wooll&) @] (Sen et al. [811X).
The lower diagram shows the distribution of dissociated and undissociated acetic acid.
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Fig. 3. Calculation of solubility of NaCl(s) in ethanol-water and methanol-water at 298 K. Experimental data are from [31,82].

interest for practical applications. As shown in Fig. 3, the model can accurately reproduce the solubility
of salts in alcohol-water systems in the complete concentration range from pure water to pure alcohol.
Anissue of particular interestis the inclusion of the Born electrostatic solvation term into a mixed-solvent
electrolyte model. The Born model was included in the models of Liu and Watanasiri [20] and Lee [26] to
account for the changes in the Gibbs energy of ions due to the change in the dielectric constant. However,
it has been found in this study that inclusion of the Born term does not contribute to the accuracy of the
model. This is due to the fact that the Born term may give a partial Gibbs energy that is qualitatively
incorrect with a wrong sign (cf. [22]). Also, the Born term contribution to the activity coefficient shows
a maximum with respect to concentration when the dielectric constant is corrected to account for com-
position effects. This may result in unreasonable values of the calculated activity coefficients of ionic
species. The results obtained with the model described above show that the Gibbs energy of transfer can
be accurately reproduced without using the Born term. This indicates that the change in the Gibbs energy
of ions that accompanies the transfer of the ion from one solvent to another (which is partly influenced
by electrostatic solvation effects) can be reproduced by Eq. (1), i.e. without the Born term.

4. Mod€dling high-temperature and supercritical systems

Thermodynamic properties of high-temperature and supercritical aqueous systems are important for a
variety of applications, including the study of geological systems, power plant engineering and super-
critical reaction technology. In particular, the knowledge of phase equilibria in multicomponent systems
containing water, salts and nonelectrolytes is needed for the development of supercritical waste oxida-
tion technologies. For such applications, the behavior of aqueous salt systems at temperatures ranging
from ca. 300 to ca. 100@ are of primary importance. The properties of high-temperature electrolyte
solutions are significantly different from those at moderate temperatures because of the strong increase in
the tendency for ion pairing as the temperature increases. The predominance of ion pairs is undoubtedly
true in the vapor phase and has been demonstrated for the liquid phase using conductance measuremen
[40,41]. Also, the formation of ion pairs gives rise to substantial concentrations of salts in the vapor phase,
which can vary by many orders of magnitude as a function of temperature and pressure. This behavior
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becomes particularly evident at temperatures above approximateNz300e need to account for these
phenomena makes it necessary to use models that are appreciably different from those that are appropria
at temperature below 30C.

During the last decade, several equations of state were developed for the representation of high-
temperature electrolyte systems. In particular, Tanger and Pitzer [42] proposed an equation of state for the
prototype system NaCl— on the basis of an expansion around the critical point of water. An equation
based on the corresponding-states principle was developed by Levelt-Sengers and Gallagher [43]. Thes
equations were calibrated to reproduce vapor-liquid equilibria for Na€LO, but failed to predict
correct volumetric behavior at liquid-like densities. In contrast, the equation of Lvov and Wood [44] re-
produced volumetric data for liquid-like densities over a wide temperature range, but there was no claim
with respect to chemical potentials or phase compositions. Anderko and Pitzer [45] developed a more
comprehensive equation of state for the representation of vapor-liquid and solid—liquid equilibria as well
as volumetric properties of the NaCl-# system. The model of Anderko and Pitzer [45] is based on a
reference term that describes the properties of a system containing dipolar ion pairs and solvent molecules
This model was later extended to other salt systems [46—48] and to the mixed system N CO,

[49]. Economou et al. [50] developed a different equation of state for high-temperature salt systems by
combining the ion-paired, dipolar reference system with the previously developed APACT equation of
state. More recently, Kosinski and Anderko [51] extended the Anderko—Pitzer EOS to multicomponent
water—salt—nonelectrolyte systems and developed a corresponding-states methodology for systems fc
which very little experimental information is available. In this section, we briefly analyze this model and
identify the areas in which improvement is needed.

To develop a practically-oriented equation of state, it is useful to define a reference part and a per-
turbation contribution. For high-temperature salt systems, the reference part represents the propertie
of a mixture of hard-sphere, dipolar or quadrupolar ion pairs and solvent molecules. The perturbation
part arises from all other interactions and is expressed by an augmented van der Waals term. Thus, th
fundamental expression for the residual Helmholtz energy is written as [45]

a"®X(T, v, x) = a"P(v, x) + a®(T, v, x) + a®*(T, v, x) (11)

wherea'P, aP andaP®" are the repulsive, electrostatic and perturbation contributions, respectively. A pure
substance (either a salt or water or a nonelectrolyte component), is characterized by the dipole momen
in thea®® term, the van der Waals attractive parameters iraffie¢erm and the van der Waals co-volume

in all three terms. An extension of Eq. (11) to quadrupolar fluids is also available [474°THerm also
contains binary parameters.

The EOS parameters can be evaluated if sufficient experimental data are available for the mixture
of interest. In the case of high-temperature salt—-water systems, a comprehensive experimental databas
exists only for NaCl. Fragmentary VLE, PVT and solubility data are available for KCI, LiCl, £aCl
and NaSQy. For most salts, experimental data are limited to solid solubilities or are lacking altogether.
Therefore, a two-level approach to parameter evaluation was developed [51]:

1. Parameters for the Na@l H,O system were regressed using all available VLE, density and SLE
data to create a comprehensive equation of state. Fig. 4 shows the results of vapor-liquid equilibrium
calculations for this system for temperatures ranging from 573 to 1073 K.

2. Theresulting equation of state for NaChkiwas used as a “master EOS” for other salt—-water systems.
Only selected parameters were then adjusted to match the behavior of other systems.
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Fig. 4. Computation of vapor-liquid equilibria in the system NaGIGHiIsing the high-temperature EOS. The symbols denote
the data of Bischoff and Pitzer [83] and Bodnar et al. [84], as recalculated by Chou [85].

For estimating the properties of systems for which little experimental information is available, a
corresponding-states approach is promising. In the case of pure ionic fluids, corresponding-states meth-
ods [52-54] have been proven useful for estimating the properties of salts at high temperatures.
However, no rigorous corresponding-states treatment is available for salt-water mixtures. At the same
time, analysis of the phase behavior of several electrolyte systems at high temperature reveals sig-
nificant regularities [54,55], which may be regarded as a manifestation of a corresponding-states be-
havior. For example, the shape of vapor—liquid coexistence curves is similar for agueous NaCl, KCI
and NaOH solutions. This indicates that a mapping transformation can be found that would map the
properties of several salts onto the properties of the well-known NaB}LO system. Kosinski and
Anderko [51] proposed such a transformation by noting that the EOS (Eqg. (11)) can be written in
terms of three reduced variablés = a/ax, b = b/bx and i = u/u*, where the asterisk de-
notes a reducing parameter, which is substance-specific, but generally unknown. Since the behavior
of ion-pair fluids should be the same under the same reduced conditions, the equation of state for an
MeX fluid can be mapped onto the equation of state for NaCl by applying a transformation of para-
meters, i.e.

amex* (@)
*aNaCI = kMex,NaanaCI (12)

with analogous expressions for the parametersand m. The three parameters,fjl’éx,,\,ada,\.aq,

k&’;X,NaCI ANaCl andk,fj,‘gx’NaCI anaciare temperature-independent proportionality factors and the Mge®-H
binary interaction parameters can be approximated by those for NaGl-Fhus, the equation of state
for the MeX-H0O fluid can be mapped onto the equation for NaGleHy adjusting only the three
proportionality factors. Fig. 5 illustrates the results of such calculations for the system KI@D. As
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Fig. 5. Vapor-liquid equilibria in the system K@l H,O. The lines have been obtained from the EOS for Na®l,0 after
applying a transformation of parameters. The symbols represent the data of Khaibullin and Borisov [86}yenet-![87].

shown in this figure, the transformation yields accurate results of vapor—liquid equilibrium calculations
for this system.

The transformation of parameters based on corresponding-states considerations applies only to fluic
properties. The solid-phase properties remain entirely substance-specific. Thus, when applying the
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Fig. 6. Solid—fluid equilibria for the system NaO, + H,O. The lines have been obtained from the EOS and the symbols
represent experimental data [88,89].
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“master” EOS with transformed parameters, it is necessary to use specific parameters for computing
solid-phase fugacities, which are necessary to compute solid—fluid equilibria. An example of such calcu-
lations is shown in Fig. 6 for the system g0, + H,O.

It should be noted that the high-temperature models have not been, so far, used in the framework
of speciation calculations. An extension of the high-temperature electrolyte EOS to simulate speciation
equilibriawould be highly desirable in view of the well-known effects of hydrolysis of salts in supercritical
fluids. Also, it would make it possible to model other reactions in supercritical water. The development
of a comprehensive, speciation-based equation of state for high-temperature electrolyte systems would
require a simultaneous analysis of thermodynamic and electrical conductance data in view of the fact
that conductance provides more direct information regarding ion pairing. Another worthwhile goal would
be to integrate the high-temperature, ion pair-based approach with the low- and moderate-temperature
approach into a unified model. Such a model, if computationally efficient, would span the full range
of temperatures that are of interest in practice and would avoid any discontinuities in the prediction of
thermodynamic properties.

5. Transport properties of electrolyte solutions

Development of theories of transport properties of dilute electrolyte solutions has been a classical
subject of statistical mechanics since the pioneering works of Onsager and Fuoss [56]. Traditionally, the
theoretical models have been focused on elucidating the limiting conductivity or diffusivity as a function
of ion properties and on predicting the composition dependence of transport properties of dilute solutions.

Limiting conductivities and diffusion coefficients at infinite dilution provide a starting point for the
computation of transport properties at finite concentrations. Unlike the finite-concentration properties,
the limiting properties are additive with respect to individual ions. The available theories of limiting
diffusivity and conductivity are based on the continuum-mechanics dielectric friction approach [57,58].
The dielectric friction theory makes it possible to gain insight into the mobility of charged spheres in
a dielectric continuum. However, it does not yield quantitative predictions for real ions because it does
not include structural effects of ion-solvent interactions [59,60]. The structural effects caused by interac-
tions between ions and the hydrogen-bonded network of water molecules were extensively investigated
using experimental techniques [61,62]. It was determined that the temperature dependence of limiting
diffusivities and conductivities is determined by the structure-breaking and structure-making properties
of ions. To develop a correlation for predicting the temperature dependence of limiting conductivity
and diffusivity, Anderko and Lencka [63,64] utilized the structural entropy of ions, which was proposed
by Marcus [65] as a quantitative measure of the structure-making and structure-breaking properties of
ions. This correlation makes it possible to predict the limiting conductivity or diffusivity as a function of
temperature if one experimental data point is known (usually at ambient temperature).

Inthe case of viscosity, the properties of individual ions are determined by the JoneB-ddefficients
[66]. These coefficients determine the concentration dependence of viscosity in relatively dilute electrolyte
solutions. From the point of view of their physical significance, the Jones-Balefficients are the
analogs of limiting diffusivity or conductivity because they are additive with respect to individual ions
and they are influenced by the structural properties of ions [65,67]. Lencka et al. [68] developed a
correlation for predicting the temperature dependence @ tteefficients using the values of the entropy
of hydration of ions. With this correlation, thcoefficients can be predicted as a function of temperature
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if one experimental data point is available at a reference temperature. There is substantial evidence tha
structural effects determine not only the temperature dependence of the vig&oséificients, but also

their absolute values. However, a quantitative correlation for the prediction @ tteefficients at a
reference temperature has not been found yet.

The concentration dependence of transport properties has been extensively studied for dilute solu-
tions. As early as in 1926, Onsager [69] developed a limiting law for electrical conductivity by using
the Debye—Hickel [13] distribution functions. In a comprehensive study, Onsager and Fuoss [56] de-
rived limiting laws for several transport coefficients. This theory was extended to self-diffusivity of ionic
mixtures by Onsager and Kim [70]. Justice [71] reviewed various classical theories of electrical conduc-
tivity in dilute solutions, which are generally based on coupling Onsager’s continuity equations with the
Debye—Huckel distribution functions. These theories provide a quantitative representation of the relax-
ation and electrophoretic effects, which determine the concentration dependence of transport properties it
dilute solutions. Because of the limitations of the Debye—Hiickel theory, these models are generally valid
for concentrations up to 18 mol/dm?®. A major improvement over the classical theories was obtained by
Bernard et al. [73] and Turg et al. [74] by combining the Onsager continuity equations with equilibrium
distribution functions calculated for the unrestricted primitive model using the mean spherical approxi-
mation (MSA). The MSA theory accurately represents the properties of electrolyte solutions in the limit
of the primitive model, i.e. up to approximately 1 mol/irfihis substantially increases the validity range
for the transport property predictions. However, analytical expressions for the MSA transport theory are
not available for the general case of systems containing multiple cations and anions.

In concentrated electrolyte systems, the concentration dependence of transport properties is determine
notonly by the electrostatic (relaxation and electrophoretic) effects, which are dominant in relatively dilute
solutions. In systems with substantial ionic concentration, the long-range interionic forces are effectively
screened to short-range by patterns of alternating charges. Then, interionic forces can be combined witt
all other interparticle forces on the same basis. Thus, all interparticle forces in concentrated solutions
can be effectively treated as short-range forces and the solution properties can be calculated by method
similar to those for nonelectrolytes. This rationale applies to both thermodynamic [12,75] and transport
properties. Using this approach, Anderko and Lencka [64] developed a model for self-diffusivity of
concentrated electrolyte systems by combining the MSA transport theory with the hard-sphere theory,
which is adequate for nonelectrolyte solutions. According to this model, the self-diffusivity is calculated as

DS Sk;
D;=D°——)(1+— 13
(or) (4 %) &

1

whereDiO is the limiting diffusivity and the two terms in parentheses denote the hard sphere and relaxation
contributions. For binary systems, the hard-sphere and relaxation terms are calculated from expression
developed by Tham and Gubbins [76] and Bernard et al. [72,73], respectively. Both terms can be computed
if the radii of all ions and neutral species are known. To a first approximation, crystallographic radii can be
used. Infact, this approximation works for relatively dilute solutions (up to ca. 1 M). For more concentrated
solutions, itis necessary to use effective species radii, which are adjusted on the basis of experimental date
Since closed-form expressions for the electrostatic and hard-sphere terms are available only for binary
systems, Anderko and Lencka [64] developed a mixing rule based on the Stefan—Maxwell formalism of
multicomponent diffusion. An analogous model has also been developed for electrical conductivity [63].
Fig. 7 shows an application of this model to compute the self-diffusivities of all three species that existin
the CaC}—H,O system. The dotted lines in Fig. 7 show the results obtained using only crystallographic
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Fig. 7. Self-diffusion coefficients of species in aqueous electrolyte solutions. The upper diagram shows the diffusivities of Ca
Cl~ and HO in the CaC} + H,0 system. The lines have been obtained from the model using crystallographic ion radii (dotted
lines) and effective radii (solid lines). The symbols denote experimental data cited by Mills and Lobo [90], pp. 49-51. The lower
diagram compares the diffusivities of oxygen in KCI, LiCl and Mg&blutions with the experimental data of Ikeuchi et al. [91].

diameters. As expected, a reasonable agreement with experimental data has been obtained only for
relatively dilute solutions, i.e. for concentrations below 1 m. At higher concentrations, the model with
crystallographic parameters fails to reproduce the experimentally observed rapid decrease of diffusivities
with concentration. On the other hand, the model with effective ionic diameters (Eq. (4)) reproduces the
data with very good accuracy. This is shown by the solid lines in Fig. 7. The model is also applicable to
neutral species. This is illustrated in the lower diagram of Fig. 7 for the diffusivities of oxygen in KCl,
LiCl and MgCl solutions.
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Fig. 8. Calculated and experimental diffusion coefficients for Ni- and Cl-containing species in aqueousdii@bns. Exper-
imental data were taken from the compilation of Mills and Lobo [90].

The diffusivity model is consistent with the speciation approach to electrolyte solutions. This is particu-
larly important for systems that show appreciable complexation. In such systems, the measured diffusion
coefficients correspond to weighted averages of diffusion coefficients for individual (simple and com-
plexed) species. The measurable aggregate diffusivity of a species that undergoes complexation (denote
by X) is related to those of individual complexesXQ by [64]

; aCQiXi
Dy, = ZIDQin dex, (14)

where the derivative can be computed using a thermodynamic speciation model. For example, Fig. 8
shows the calculated aggregate self-diffusion coefficients of nickel and chloride-containing species in
a NiCl, solution. Because of the formation of the NiGtomplex, the measured diffusion coefficients
of nickel and chloride are not equal to those of bar&"Nind CI ions, respectively (except at infinite
dilution). Instead, they include the contribution of complexes according to Eq. (14).

In the case of viscosity, a speciation-based model has been developed by Lencka et al. [68]. This mode
extends the Jones—Dole [66] equation to multicomponent, concentrated systems. A general expressiol
for the relative viscosity is written as:

me=1+n"+nt 00 (15)

where the termg-R, »S and »° are the contributions of long-range electrostatic effects, individual
species and species—species interactions, respectively-Therm is calculated from the Onsager and
Fuoss [56] model for ions in a dielectric continuum. Tfie€ontribution is calculated using the viscosity

B coefficients for individual species. Finally, th€™> term is expressed using an empirical function

and contains binary parameters that are regressed from experimental data at finite concentration. Fig.
shows an application of the viscosity model to LiBr solutions at several temperatures in a relatively wide
concentration range.

The transport property models discussed above have been designed to be consistent with the speciatic
approach. This makes them suitable for modeling electrochemical processes in aqueous systems, i
which the transport of individual species is particularly important. However, a major challenge remains
to develop extensions of these models to mixed-solvent solutions.
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Fig. 9. Comparison of calculated relative viscosities of aqueous LiBr solutions with experimental data of Bogatykh and Evnovich
(as cited by Lobo and Quaresma [92]).

6. Conclusions

In recent years, substantial progress has been achieved in the development of semi-empirical, engineer-
ing-oriented models for electrolyte solutions. In this review, electrolyte models have been reviewed with
emphasis on mixed-solvent electrolyte models, equations of state for high-temperature and supercritical
electrolyte systems and transport property models for multicomponent, concentrated systems.

In the area of mixed-solvent electrolytes, efficient activity coefficient models have been obtained by
several authors by combining long-range electrostatic interaction terms with short-range interaction terms
derived from nonelectrolyte theories. In addition to these terms, a fully quantitative treatment requires the
use of additional terms for representing ionic interactions that are not included in the long-range term. It
has been demonstrated that it is beneficial to combine excess Gibbs energy models with a comprehensive
treatment of solution speciation. A new model has been proposed for this purpose and preliminary results
have been obtained. Treatment of speciation for mixed-solvent systems requires a careful combination of
standard-state properties with activity coefficient models. This can be achieved in practice by ensuring the
correct representation of Gibbs energies of transfer and utilizing the existing databases of standard-state
properties in aqueous systems.

In the area of supercritical and high-temperature systems, accurate equations of state have been de
veloped for phase equilibrium computations at temperatures ranging from 300 toCLOBilice these
equations are based on the ion-paired reference state, a treatment of speciation and reaction equilibria
in high-temperature systems remains to be developed. Another major challenge is to develop a seamless
transition between the models that are appropriate in the “normal” temperature range (i.e. updd 300
and the high-temperature models.

In the area of transport properties, engineering-oriented models have been obtained by extending the
theories of the transport of ions in a dielectric continuum to multicomponent, concentrated systems. It
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has been demonstrated that the predictive character of these models is enhanced when they are cor
bined with thermodynamic speciation calculations. However, extension of transport property models to
mixed-solvent systems is not straightforward and remains to be developed.
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