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Abstract A comprehensive model has been established for calculating thermodynamic
properties of multicomponent aqueous systems containing the Na+, K+, Mg2+, Ca2+, Cl−

and NO−
3 ions. The thermodynamic framework is based on a previously developed model

for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the
properties of salt solutions at temperatures ranging from the freezing point to 300 °C and
concentrations ranging from infinite dilution to the fused salt limit. The model has been
parameterized using a combination of an extensive literature database and new isopiestic
measurements for thirteen salt mixtures at 140 °C. The measurements have been performed
using Oak Ridge National Laboratory’s (ORNL) previously designed gravimetric isopiestic
apparatus, which can also detect solid phase precipitation. In addition to various Na–K–Mg–
Ca–Cl–NO3 systems, results are reported for LiCl solutions. Water activities are reported for
mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The
isopiestic measurements reported here simultaneously reflect two fundamental properties of
the system, i.e., the activity of water as a function of solution concentration and the occur-
rence of solid–liquid transitions. The thermodynamic model accurately reproduces the new
isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Be-
cause of its high accuracy in calculating vapor–liquid and solid–liquid equilibria, the model
is suitable for studying deliquescence behavior of multicomponent salt systems.
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1 Introduction

Accurate knowledge of the deliquescence behavior of multicomponent brines is expected
to enhance the understanding of the evolution of the chemical environment in contact with
metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada,
USA. It is anticipated that a layer of dust containing volcanic tuff and a mixture of salts
originating from evaporation of seepage waters will tend to accumulate over time on all
surfaces. The air inside the placement drifts will be relatively dry after final closure due to
the temperature remaining well above the boiling point of water. As the temperature slowly
decreases for several centuries due to radioactive decay, the relative humidity may reach suf-
ficiently high levels for the mixture of initially dry salts to form concentrated brines through
deliquescence. The concentrations of ions present in solutions contacting metal surfaces af-
fect corrosion processes as, for example, the Cl−/NO−

3 ratio is an important consideration
in corrosion calculations. Hence, thermodynamic properties of mixed aqueous solutions are
needed for reliable predictions of the composition of the brines formed under the expected
scenarios of in-drift temperature and humidity evolution.

Complete phase diagrams, showing relative humidity (or water activity) as a function of
composition, are scarce even for solutions containing two salts. There are very few accurate
experimental data sets available on deliquescence behavior of multicomponent aqueous salt
solutions at elevated temperatures. This underscores the importance of having an accurate
thermodynamic model that would be capable of predicting the behavior of multicomponent
systems in a wide temperature range using parameters determined from limited experimen-
tal data. While the well-known Pitzer ion-interaction model provides a useful framework
for the prediction of solubilities in multicomponent solutions using activity data on binary
systems with a common ion, the temperature dependence of solute-specific parameters is
often not available with sufficient accuracy. Also, the molality-based Pitzer model is ap-
plicable for concentrations typically up to ca. 6 mol·kg−1, which is often insufficient for
highly concentrated systems that contain nitrates. Thus, it is necessary to develop a model
that would be applicable to multicomponent, concentrated solutions up to solid saturation
or, under some conditions, even the fused salt limit. Further, it is desirable to verify model
results against measurements made in the temperature range that is of direct interest for
studying deliquescence phenomena.

The main purpose of the measurements described here is to demonstrate that the unique
ORNL high-temperature isopiestic apparatus can be used to investigate the relationship be-
tween deliquescence, relative humidity (RH) and temperature for multicomponent aqueous
solutions. The points where a new phase appears or disappears can be detected when a series
of measurements of solvent mass and the corresponding vapor pressure are made as water is
added or withdrawn. When the relative humidity over a mixture of solid salts increases, the
solution first appears at the eutonic point of the mixture where the solution is simultaneously
saturated with respect to all components. The relative humidity at the eutonic point, the mix-
ture deliquescence RH, is the lowest relative humidity coexisting with a liquid solution. The
tendency to deliquesce (the hygroscopic character) of solutes depends mainly on their sol-
ubility, but also on the particular character of solute-solvent interactions, described also as
nonideality, or vapor-pressure lowering ability. Because an addition of a new electrolyte to
a saturated solution initially lowers its vapor pressure without causing precipitation, the del-
iquescence RH of multicomponent solutions decreases as the number of solutes increases.

The second objective of this paper is to develop a comprehensive thermodynamic model
for predicting the thermodynamic behavior of aqueous mixtures containing the Na+, K+,
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Ca2+, Mg2+, Cl− and NO−
3 ions. These are the key ionic components in natural environ-

ments that may give rise to the formation of concentrated solutions through deliquescence
phenomena. Comprehensive modeling of such mixtures requires calibrating the model to
match the properties of the constituent binary (i.e., salt–water), ternary (i.e., salt 1–salt 2–
water) and higher-order subsystems. For all such systems, the primary requirement for the
model is to reproduce the solid–liquid equilibria and vapor pressures as a function of tem-
perature and composition. In the development of the model, both literature data and the new
isopiestic measurements are used. Whereas literature data are primarily used to ensure the
correct representation of the properties of simpler (i.e., binary and ternary) subsystems, the
new isopiestic data are essential for verifying the performance of the model for concentrated
multicomponent mixtures at high temperatures.

2 Experimental

The isopiestic method is based on equilibration of a number of solutions together with refer-
ence standards in a common chamber, until all transfer of the solvent ceases and all solutions
reach the same water activity. The ORNL high-temperature isopiestic apparatus, described
previously [1–5], has been used during the last several decades to measure vapor pressures
and obtain osmotic and activity coefficients for many aqueous solutions of pure electrolytes
and their mixtures at temperatures typically between 110 and 250 °C. The main feature of
this apparatus is its internal electromagnetic balance with optical detection. Since only the
solvent is exchanged between samples while the masses of nonvolatile solutes placed ini-
tially in the platinum cups remain constant, the amounts of water present at any time and
hence the molalities of the solutions can be determined gravimetrically without interrupt-
ing the equilibrium. The isopiestic apparatus provides, in general, a greater reliability and
accuracy of the results than other recently reported experimental methods of investigating
deliquescence [6, 7] thanks to the precise control of relative humidity over arbitrarily long
times, the absence of atmospheric air, the high accuracy of the gravimetric method for mo-
lality and of the relative isopiestic method for vapor pressure, and the fast equilibration times
due to the efficient heat exchange between the solution cups.

The internal balance was calibrated during each series of weighings using platinum and
titanium mass standards placed in the sample holder between the sample cups. All twenty
cups containing the samples, the reference solutions and the mass standards were weighed
at each equilibrium point two to three times. The corrections for buoyancy in water or air
were applied to all weighings. Each solution contained 10 to 15 mmole of salts (about 1 g)
and no more than 3 g of water. The accuracy of the balance was better than ±1 mg. The
estimated absolute error of the resulting average molalities m (mol·kg−1) was less than
0.0001 mol·kg−1.

The apparatus was also equipped with quartz pressure transducers (Digiquartz, Paro-
scientific, Inc.) allowing for accurate monitoring of the approach to equilibrium. The set
of four Digiquartz transducers (with the ranges of 2.1, 6.9, 21 and 69 bar), kept in an air
oven at a constant temperature of about 39.0 ± 0.1 °C, provided an accurate and relatively
simple means of measuring water vapor pressure. Although only a dead-weight instrument
with a precise pressure difference indicator could deliver a substantially greater accuracy,
at 140 °C, and at the pressures between 0.35 bar and 2.7 bar, the relative isopiestic method
based on reference solutions was still significantly superior to direct pressure measurement.
The accuracy of the direct pressure measurement was limited by the effects of tempera-
ture, viscosity, surface tension and hydrostatic pressure of the liquid water present inside
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the transducers and in the tubing connecting them to the vapor space maintained at elevated
temperature. The results reported here are not based on the measured pressures, but instead
on the calcium chloride reference solution [5].

Stock solutions were prepared by weight using distilled and deionized water (from
a Barnstead NANOpure four-stage water purification system) and the chemicals supplied
by Alfa Aesar Chemical Co. without any purification other than drying. Two grades of pure
salts were used. The chlorides were the “ultra dry” grade chemicals with metal-basis puri-
ties specified by the vendor as 0.99998 for NaCl and KCl, 0.99995 for LiCl, and 0.9999 for
CaCl2 and MgCl2. These salts, received in the form of powders or small beads stored in glass
ampoules under argon, were also certified to contain at most 100 ppm oxide and hydrox-
ide, and were used without drying. The nitrates of sodium, potassium, calcium and mag-
nesium were “Puratronic” grade chemicals with metal-basis purities better than 0.99995.
These salts, in particular the hydrates of Ca(NO3)2 and Mg(NO3)2, were dried carefully in
a vacuum oven for several days, while avoiding deliquescence and possible decomposition
by slowly increasing temperature to about 140 °C.

All stock solutions of the “ultra dry” salts contained some amount of insoluble impurities.
In the case of CaCl2 and MgCl2 this was determined by XRD to be mostly sulfate. The exact
quantities of impurities were not determined; however, they were apparently higher than
expected for these types of chemicals. It is likely that the purity of these materials was lower
than stated by the vendor. There were no noticeable insoluble impurities in the solutions of
the “Puratronic” salts.

This work describes the first use of the ORNL isopiestic apparatus specifically for de-
termination of solubilities in multi-component solutions. The water initially injected into
the apparatus was previously degassed by boiling and sparging with helium. The solutions
were all liquid at the starting relative humidity of 75%. The relative humidity was then de-
creased in about 20 steps to the final value of 10% by releasing water from the autoclave
under atmospheric pressure or vacuum when necessary. At least 16 hours were allowed for
equilibration at each step. Since the measurements started with liquid samples of approxi-
mately the same molality as the stock solutions, it was convenient to conduct the measure-
ments by progressively decreasing the relative humidity. The process observed was in fact
precipitation (efflorescence) of salts from the solution instead of deliquescence. However,
measurements can be also be made in the reverse direction by starting from solid salt mix-
tures. It is assumed that the results are completely reversible with respect to the direction of
the changes in relative humidity.

The phase changes occurring in the mixed solutions were clearly visible as breaks in the
curve representing initially the osmotic coefficient of the solution as a function of relative
humidity. The osmotic coefficient, φ, was calculated as

φ = 1000ws/Ms

∑
ni lnas (1)

where M s (g·mol−1) is the molecular weight of water, as is the activity of water, ni are the
numbers of moles for each ion and ws (kg) is the mass of water. The value of as is obtained
from values calculated for an aqueous reference CaCl2 solution. Naturally, after the appear-
ance of a solid phase, because the distribution of the salts between solid and liquid phases
is not known, the quantity calculated from the above equation does not represent the actual
osmotic coefficient. As the first component begins to precipitate from the solution, the ratio
ni/ws exceeds the actual molality of the liquid phase and the osmotic coefficient appears
to decrease sharply. This process continues gradually as the relative humidity continues to
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Table 1 Compositions of the samples. Solute contents in each cup are given as the total number of millimoles
corresponding to the salt formula

1. NaCl: 14.672

2. NaCl + NaNO3: 7.4646 + 6.8248

3. Mg(NO3)2: 8.8921

4. NaNO3 + KNO3 + Ca(NO3)2 + Mg(NO3)2: 5.2873 + 1.2967 + 2.3614 + 1.2197

5. CaCl2 + MgCl2 + Ca(NO3)2 + Mg(NO3)2: 5.0878 + 0.77353 + 2.6309 + 1.4123

6. LiCl: 13.197

7. NaCl + KCl + NaNO3 + KNO3: 5.4795 + 2.3108 + 2.7690 + 1.0563

8. KCl + KNO3: 8.1026 + 2.8021

9. NaCl + KCl + NaNO3 + KNO3 + CaCl2 + MgCl2 + Ca(NO3)2 + Mg(NO3)2:

4.1946 + 2.0027 + 2.8693 + 0.70451 + 0.53286 + 0.20404 + 0.40974 + 0.13368

10. NaNO3 + KNO3: 9.0689 + 2.2832

11. CaCl2: 9.3057

12. Ca(NO3)2: 7.9988

13. CaCl2 + Ca(NO3)2: 4.5080 + 4.0814

decrease and more water evaporates from the solution. After reaching the eutonic composi-
tion, all the remaining water evaporates at a constant relative humidity. By using samples of
varying solute ratios, a complete solubility diagram can be obtained.

The compositions of the samples are summarized in Table 1. For each of the 13 samples
defined in Table 1, Table 2 gives the masses of water (and, hence, the overall system compo-
sitions) that correspond to 21 values of the water activity. Note that in one case (sample cup
8 containing KCl+KNO3) a deficit of mass has been found. The negative values assigned to
water mass in Table 1, amounting to nearly 3% of the initial amount of water, reflect in fact
the difference between the final and the initial masses of the salts. The source of this error
was not determined with certainty; it could be due to either a loss of stock solution when
initially injecting the samples, or, more likely, a splatter of a drop of the solution during
stepwise water removal from the autoclave. To avoid violent boiling, the pressure has to be
reduced very slowly, in particular when the solutions are close to saturation. However, the
extremely slow rates of water removal required to guarantee no splatter were impractical,
and occasional violent releases of steam bubbles could not be ruled out. Using taller sam-
ple cups with lids made of platinum mesh could reduce the likelihood of a drop of solution
leaving a sample cup.

3 Thermodynamic Model

For modeling the properties of aqueous Na–K–Ca–Mg–Cl–NO3 mixtures, we use a thermo-
dynamic framework that has been previously developed at OLI Systems for mixed-solvent
electrolyte systems (Wang et al. [8–10]). This framework is capable of reproducing the prop-
erties of multicomponent salt solutions ranging from infinite dilution to the fused salt limit
and, therefore, it is particularly suitable for studying deliquescence phenomena. The model
was described in detail in previous papers [8–10] and, therefore, only a brief summary is
given here.

The thermodynamic framework combines an excess Gibbs energy model for mixed-
solvent electrolyte systems with a comprehensive treatment of chemical equilibria. In this
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framework, the excess Gibbs energy is expressed as

Gex

RT
= Gex

LR

RT
+ Gex

II

RT
+ Gex

SR

RT
(2)

where Gex
LR represents the contribution of long-range electrostatic interactions, Gex

II accounts
for specific ionic (ion–ion and ion–molecule) interactions and Gex

SR is the short-range contri-
bution resulting from intermolecular interactions.

The long-range interaction contribution is calculated from the Pitzer–Debye–Hückel for-
mula [11] expressed in terms of mole fractions and symmetrically normalized, i.e.,

Gex
DH

RT
= −

(∑

i

ni

)4AxIx

ρ
ln

(
1 + ρI

1/2
x∑

i xi[1 + ρ(I 0
x,i)

1/2]

)
(3)

where the sum is over all species, Ix is the mole fraction-based ionic strength, I 0
x,i represents

the ionic strength when the system composition reduces to a pure component i, i.e., I 0
x,i =

0.5z2
i ; ρ is related to the hard-core collision diameter (ρ = 14.0) and the Ax parameter is

given by

Ax = 1

3
(2πNAds)

1/2

(
e2

4πε0εskBT

)3/2

(4)

where ds and εs are the molar density and dielectric constant of the solvent, respectively. The
specific ion-interaction contribution is calculated from an ionic strength-dependent, sym-
metrical second virial coefficient-type expression [8]:

Gex
II

RT
= −

(∑

i

ni

)∑

i

∑

j

xixjBij (Ix) (5)

where Bij (Ix) = Bji(Ix), Bii = Bjj = 0 and the ionic strength dependence of Bij is given
by

Bij (Ix) = bij + cij exp(−√
Ix + a1) (6)

and where bij and cij are binary interaction parameters and a1 is set equal to 0.01. In general,
the parameters bij and cij are represented as functions of temperature as

bij = b0,ij + b1,ij T + b2,ij /T + b3,ij T
2 + b4,ij lnT (7)

cij = c0,ij + c1,ij T + c2,ij /T + c3,ij T
2 + c4,ij lnT . (8)

The last two parameters of Eqs. 7 and 8 are typically necessary only when there is a need
to reproduce experimental data over a very wide range of temperatures, e.g., from −50 to
300 °C. Finally, the short-range interaction contribution is calculated from the UNIQUAC
equation [12]. In systems containing only strong electrolytes, such as the Na–K–Ca–Mg–
Cl–NO3 mixtures considered here, the short-range term is unnecessary and all interactions
are accounted for by Eq. 5.

The excess Gibbs energy model is used to calculate nonideality effects on solid–liquid
equilibria and chemical equilibria, such as ion pairing. For example, solubility of a salt MX
is represented as a chemical equilibrium between the solid salt MX(s) and the ions that result
from its dissociation, Mm+ and Xx−. The chemical equilibrium is governed by the chemical
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potentials of all species that participate in a given reaction. The chemical potential of each
ionic or neutral species i is determined by its standard-state contribution, μo

i (T ,P ), and its
activity coefficient, γi(T ,p,x), i.e.,

μi(T ,p, x) = μo
i (T ,p) + RT lnxiγi(T ,p, x). (9)

The standard-state chemical potentials for aqueous species, μo
i (T ,p), are calculated as

functions of temperature and pressure using the Helgeson–Kirkham–Flowers–Tanger (HKF)
equation of state [13, 14]. The parameters of the HKF model are available for a large number
of aqueous species including ions and ion pairs [15, 18]. It should be noted that standard-
state properties calculated from the model of Helgeson et al. are based on the infinite-dilution
reference state and on the molality concentration scale. To make the equilibrium calculations
consistent when the standard-state properties are combined with the mole fraction-based
and symmetrically normalized activity coefficients, two conversions are performed: (1) the
activity coefficients calculated from Eq. 2 are converted to those based on the unsymmetrical
reference state, i.e., at infinite dilution in water, and (2) the molality-based standard-state
chemical potentials are converted to corresponding mole fraction-based quantities [8].

4 Determination of Parameters

The parameters of the model are determined using thermodynamic data of various types,
including

(1) vapor–liquid equilibria
(2) activity and osmotic coefficients
(3) solid–liquid equilibria
(4) enthalpies of dilution or mixing
(5) heat capacities
(6) densities.

The parameters for the Na–K–Mg–Ca–Cl–NO3 systems were evaluated and/or verified
using a combination of literature data and the new isopiestic data reported in this study.
There is a very large body of literature data that covers all the eight binary subsystems (i.e.,
NaCl, KCl, MgCl2, CaCl2, NaNO3, KNO3, Mg(NO3)2 and Ca(NO3)2 with H2O), most of
the twenty-eight possible ternary subsystems and an appreciable number of quaternary and
quinary subsystems of this ternary mixture [7, 19–304]. References to binary and ternary
data are collected in Table 3 in the form of a matrix defined by the eight fundamental con-
stituent salts. The diagonal elements of the matrix (i.e., salt A–salt A) show references to the
sources of experimental data for the binary subsystems (i.e., salt A–H2O). The off-diagonal
elements refer to the data for the ternary subsystems (i.e., salt A–salt B–H2O). As shown in
Table 3, there is a wealth of information for all binary systems. In the case of the ternary
subsystems, there is extensive experimental coverage for mixtures containing two chlorides.
Also, there are a reasonable number of experimental data sources for the ternaries that con-
tain two nitrates and those that combine the nitrates and chlorides of sodium and potassium.
However, the experimental coverage is much sparser for mixed chloride–nitrate ternaries
that contain magnesium and calcium in addition to sodium and potassium.

Table 4 summarizes the sources of experimental data for quaternary and higher-order sys-
tems. Since a complete matrix representation is not practical in this case, Table 4 groups the
subsystems according to the availability of experimental data. It is noteworthy that a fairly
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Table 3 Summary of references to experimental data sources for binary and ternary aqueous solutions con-
taining Na, K, Mg, Ca, Cl and NO3 salts

NaCl [19–25],
this work

KCl [165–179] [19–21,
26–35]

MgCl2 [44–47,
165, 166,
180–203]

[48, 49,
165,
180–182,
204,
217–230]

[19,
26–28,
36–96]

CaCl2 [98,
165–169,
204–216]

[167, 204,
205, 217,
218,
231–237]

[37, 50,
51, 183,
204,
217–220,
231,
238–245]

[5, 26–28,
36–39,
97–111],
this work

NaNO3 [7, 113,
123,
246–249,
272–280],
this work

[113, 299] [20, 22,
23, 26,
40–42,
112–140]

KNO3 [22, 23,
113, 144,
233, 246,
247, 281,
299–303]

[113, 143,
170, 232,
246–249,
272,
281–288],
this work

[304] [232] [7, 22, 23,
113, 114,
246–257],
this work

[19, 20,
22, 23, 26,
40, 41,
112–121,
141–150]

Mg(NO3)2 [184] [184,
258–263]

[266] [19, 26, 27,
36, 40, 41,
43, 112,
141,
151–160],
this work

Ca(NO3)2 [22, 233] [232, 267] [232,
287], this
work

[122, 206,
264, 265]

[232, 264,
267–269]

[270, 271] [22, 26, 36,
40, 97, 142,
161–164]

NaCl KCl MgCl2 CaCl2 NaNO3 KNO3 Mg(NO3)2 Ca(NO3)2

large number of data sources deal with chloride-only multicomponent mixtures. Much less
information is available for mixtures of chlorides and nitrates. Here, the new isopiestic mea-
surements fill important gaps.

The model parameterization procedure adopted in this work consisted of several steps.
First, binary parameters were determined using data for the eight binary subsystems. These
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Table 4 Summary of references to experimental data for quaternary, quinary and higher-order aqueous sys-
tems containing Na, K, Mg, Ca, Cl and NO3 salts

Salts References

NaCl–KCl–MgCl2 [52, 180, 181, 185, 186, 221, 222, 238, 290–294]

NaCl–KCl–CaCl2 [166, 168, 185, 187, 207, 295]

NaCl–MgCl2–CaCl2 [183, 185, 238, 239, 296]

KCl–MgCl2–CaCl2 [219, 220, 238, 297, 298]

NaCl–KCl–MgCl2–CaCl2 [185, 238, 290, 296]

NaCl–KCl–NaNO3 [246, 299]

NaCl–KCl–KNO3 [246, 299]

NaCl–NaNO3–KNO3 [22, 23, 246, 250, 273, 299], this work

KCl–NaNO3–KNO3 [246, 300]

KCl–CaCl2–KNO3 [232, 267, 282]

KCl–CaCl2–Ca(NO3)2 [232]

CaCl2–KNO3–Ca(NO3)2 [232, 267, 282]

KCl–MgCl2–Mg(NO3)2 [304]

MgCl2–CaCl2–Mg(NO3)2–Ca(NO3)2 this work

NaNO3–KNO3–Mg(NO3)2–Ca(NO3)2 this work

NaCl–KCl–MgCl2–CaCl2–NaNO3–KNO3–
Mg(NO3)2–Ca(NO3)2

this work

regressions were based on data of various types as described above. This produced the in-
teraction parameters, Eqs. 7 and 8, between the cations and anions that constitute each sub-
system. Also, thermochemical parameters (i.e., the Gibbs energy and entropy) for some hy-
drated salts were simultaneously adjusted to match solid–liquid equilibrium data. Such ad-
justments were not necessary for the solids for which thermochemical properties are known
with high accuracy.

In the second step, data for ternary subsystems were used to determine the cation–cation
and anion–anion interaction parameters. At the same stage, thermochemical parameters
were adjusted for the double salts that do not occur in binary subsystems but precipitate in
ternary and higher-order mixtures. The thermochemical properties of such double salts are
typically known with lower accuracy than those of pure solids and, therefore, they needed to
be adjusted to match their solubilities. Finally, data for quaternary and higher-order systems
were used to verify the predictions of the model. In some cases, quaternary data were used
to fine-tune model parameters when they extended to temperatures that were not covered by
the relevant ternary subsystems.

In all cases, parameters were determined to cover the temperature range from the freezing
point of salt solutions (typically between −50 and 0 °C) and 300 °C. The upper limit of
300 °C is an inherent limitation of excess Gibbs energy models when applied to aqueous
systems. Above 300 °C, the system becomes too close to the critical locus to be handled
by classical excess Gibbs energy models. However, the temperature range from the freezing
point to 300 °C comfortably encompasses the conditions that are of interest for studying
deliquescence.

The model parameters are summarized in Tables 5–7. Table 5 shows the standard-state
properties and parameters of the HKF equation of state [13–18] for all ions and neutral
aqueous species that were included in the model. All parameters for the base ions were
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taken from Refs. [16, 17] without any change. On the other hand, the standard-state prop-
erties of the ion pairs have been adjusted based on the multi-property regressions. Table 6
shows the binary parameters used in the ionic interaction term, Eqs. 6 and 7. The number of
coefficients used to express the temperature dependence of the ion interaction term depends
on the temperature range and accuracy of the available experimental data. Thus, a fairly
complex temperature dependence is used for the cation-anion parameters that reflects the
properties of salts whose properties are well known. On the other hand, other parameters are
calculated using a simpler temperature dependence. Finally, Table 7 summarizes the prop-
erties of all solid phases that were included in the model. These properties were used to
calculate the chemical potential of the solids according to standard thermodynamics.

5 Results and Discussion

In this section, we compare the modeling results with experimental data for all constituent
binary subsystems and selected ternary and higher-order systems. First, we focus on solubil-
ity relationships for the binary and ternary systems. Then, we analyze vapor-liquid equilib-
rium data for solid-saturated ternary systems using literature data [7]. Finally, we apply the
model to the new isopiestic data and analyze them in the light of solid–liquid equilibrium
predictions obtained from the model.

5.1 Solid–Liquid Equilibria in Binary Systems

Figures 1–8 show the calculated and experimental solid–liquid equilibria for the eight binary
subsystems for temperatures up to approximately 300 °C. In all cases, the SLE diagrams
include the solubility of ice (denoted by H2O(s)) in a salt solution. The lowest temperature
in each diagram corresponds to the eutectic point, at which ice coexists with the anhydrous
or hydrated salt that is stable at the lowest temperature. Then, solubility curves are included
for all solid forms that are stable up to 300 °C.

It is evident that the complexity of the solubility behavior depends primarily on whether
the cation belongs to the first group of the periodic table (Na, K) or the second (Mg, Ca). The
sodium salts show relatively simple solid–liquid equilibrium patterns. As shown in Figs. 1

Fig. 1 Calculated and experimental solid–liquid equilibria in the binary system NaNO3–H2O
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Fig. 2 Calculated and experimental solid–liquid equilibria in the system KNO3–H2O

Fig. 3 Calculated and experimental solid–liquid equilibria in the system Ca(NO3)2–H2O

and 2, NaNO3 and KNO3 form only one, anhydrous, solid precipitate at temperatures from
sub-zero to ca. 300 °C. In both cases, the solubility continuously increases with tempera-
ture up to the melting point of the pure solid. It is noteworthy that the model accurately
reproduces the solubility up to the melting point. Unlike NaNO3 and KNO3, the nitrates of
calcium and magnesium form more than one stable solid phase. This is illustrated in Figs. 3
and 4, which show the stability ranges for the various hydrated and anhydrous forms of
Ca(NO3)2 and Mg(NO3)2, respectively. The solubility behavior is particularly noteworthy
for Mg(NO3)2 (Fig. 4). In the case of this binary, the Mg(NO3)2 · 6H2O phase melts con-
gruently, which results in a solubility maximum. Thus, in the temperature range from ca.
45 to 90 °C, the salt has three values of solubility, i.e., two for Mg(NO3)2 · 6H2O on both
sides of the solubility maximum and one for Mg(NO3)2 ·2H2O at higher salt concentrations.
The solubility behavior of chlorides (Figs. 5–8) essentially parallels that of the nitrates with
respect to the complexity of their phase behavior. However, the solubility of the chlorides is
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Fig. 4 Calculated and experimental solid–liquid equilibria in the system Mg(NO3)2–H2O

Fig. 5 Calculated and experimental solid–liquid equilibria in the system NaCl–H2O

substantially lower than that of the nitrates. Similarly to the corresponding nitrates, sodium
and potassium chlorides form only one stable anhydrous solid phase at the temperatures
of interest. The only exception is the hydrate NaCl·2H2O, which is stable only below 0 °C
(cf. Fig. 5). The chlorides of calcium and magnesium form a series of stable hydrates as
shown in Figs. 7 and 8, respectively. For all binary subsystems, the model reproduces the
measurements essentially within the scatter of experimental data.

5.2 Solid–Liquid Equilibria in Ternary Systems

Figures 9–15 show solid–liquid equilibrium diagrams for seven representative ternary sys-
tems. In these figures, solubility isotherms are plotted using the weight percent of both salts
as independent variables. Thus, the points on the individual salt concentration axes corre-
spond to solubilities in the binary subsystems. In general, the chemical identity of the stable



740 J Solution Chem (2007) 36: 723–765

Fig. 6 Calculated and experimental solid–liquid equilibria in the system KCl–H2O

Fig. 7 Calculated and experimental solid–liquid equilibria in the system CaCl2–H2O

solid phase may vary with the overall composition of the system and may not be the same as
in the binary subsystems. Therefore, the solid phases that are in equilibrium with saturated
solutions are marked next to the solubility curves in Figs. 9–15.

Figure 9 shows the solubility behavior in the ternary system NaNO3–Ca(NO3)2–H2O. In
this case, the diagram is fairly simple because the stability of the solid phases that precipi-
tate for the constituent binary subsystems persists in the ternary system. Thus, the diagram
shows two branches that extend from the solubility points for the binary subsystems. These
two branches correspond to the precipitation of NaNO3 and Ca(NO3)2 · 4H2O or Ca(NO3)2,
depending on the temperature. The solubility behavior of the Mg(NO3)2–Ca(NO3)2–H2O
system (Fig. 10) is qualitatively similar in that the identity of the stable phases does not
change by moving from the binary subsystems to the ternary. However, the relative sta-
bility of the magnesium and calcium salts strongly changes with temperature. For example,
Ca(NO3)2 ·4H2O precipitates over a wide range of conditions at lower temperatures whereas
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Fig. 8 Calculated and experimental solid–liquid equilibria in the system MgCl2–H2O

Fig. 9 Calculated and experimental solubilities of solids in the system NaNO3–Ca(NO3)2–H2O

the stability range of Ca(NO3)2 ·3H2O is very narrow at 50 °C and is limited to a region close
to the binary axis.

Figure 11 illustrates solid–liquid equilibria for the NaNO3–KNO3–H2O system. In this
case, simple solubility behavior is observed at low and moderate temperatures (up to ca.
150 °C). However, a solid solution phase appears at higher temperatures and manifests itself
as two breaks in the solubility isotherms at 175 and 200 °C. This solid phase is tentatively
identified as NaNO3·KNO3.

Figures 12–15 show the behavior of mixed nitrate-chloride ternaries. The solubility
isotherms for the NaCl–NaNO3–H2O (Fig. 12) and KCl–KNO3–H2O (Fig. 13) ternaries
show simple solubility behavior without a phase change on moving from the binaries to the
ternary. However, the MgCl2–Mg(NO3)2–H2O system shows a very complicated solubility
pattern as shown in Fig. 14. This pattern results partly from the presence of a congruently
melting solid phase, Mg(NO3)2 · 6H2O, in the binary subsystem Mg(NO3)2–H2O. Because
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Fig. 10 Calculated and experimental solid–liquid equilibria in the system Mg(NO3)2–Ca(NO3)2–H2O

Fig. 11 Calculated and experimental solubilities of solids in the system NaNO3–KNO3–H2O

of this, the solubility of Mg(NO3)2 · 6H2O forms a loop in the ternary phase diagram at
intermediate temperatures. In addition to the loop, an additional solubility curve is observed
that connects the solubilities of MgCl2 · 6H2O and Mg(NO3)2 · 6H2O in the binary subsys-
tems. At higher temperatures, the solubility loop disappears. However, the solubility behav-
ior is further complicated by the transition of the stable solid form from MgCl2 · 6H2O to
Mg(NO3)2 · 2H2O through MgCl2 · 4H2O and then MgCl2 · 2H2O. These transitions are vis-
ible in the solubility curves as characteristic break points. It is noteworthy that this complex
phase behavior is accurately reproduced by the model.

The ternary system NaCl–KNO3–H2O is shown in Fig. 15. In this case, simple solubil-
ity behavior is observed at temperatures up to ca. 50 °C. However, a different phase, KCl,
appears at higher temperatures.
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Fig. 12 Calculated and experimental solid–liquid equilibria in the system NaCl–NaNO3–H2O

Fig. 13 Calculated and experimental solid–liquid equilibria in the system KCl–KNO3–H2O

5.3 Water Activities in Saturated Solutions

Vapor pressures of saturated solutions are of particular interest for studying deliquescence.
The vapor pressures are determined by the activity of water. At solid saturation, a minimum
of the water activity and, hence, vapor pressure, is reached for a given salt composition.
Figures 16–21 show the experimental and calculated water activities and the corresponding
concentrations of ions in saturated solutions of two mixed salts in water. In these figures, the
composition of a mixture of salt A and salt B is expressed using mole fractions on a water-
free basis, i.e., x ′

A = nA/(nA + nB) where nA and nB are the numbers of moles of salts
A and B . Each of the ternary mixtures contains water in the amount that is necessary to
achieve solid–liquid saturation. The overall compositions (including water) of the mixtures
in Figs. 16–21 are consistent with those shown in the corresponding ternary solid–liquid
equilibrium diagrams. By plotting the water activities on a water-free basis, it is easy to
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Fig. 14 Calculated and experimental solid–liquid equilibria in the system MgCl2–Mg(NO3)2–H2O

Fig. 15 Calculated and experimental solid–liquid equilibria in the system NaCl–KNO3–H2O

see how the activity changes as one salt is gradually replaced with another in a saturated
solution.

Figure 16 represents the water activity in the NaNO3–NaCl–H2O system as the overall
composition varies from pure NaNO3 to pure NaCl. The solid phases that are in equilibrium
with the saturated solutions are indicated next to the vapor pressure curves. These solid
phases are consistent with the SLE diagram for the same system, which is shown in Fig. 12.
The minimum in the water activity is reached at the eutonic point, at which both NaCl(s) and
NaNO3(s) coexist. The model predicts the eutonic point with very good accuracy. As shown
in Fig. 17, the model also accurately predicts the equilibrium concentrations of the Na+, Cl−
and NO−

3 ions along the solid saturation line. This provides an additional confirmation of
the SLE diagram (cf. Fig. 12). The water activities in the system NaNO3–KNO3–H2O show
a very similar pattern as illustrated in Fig. 18. The corresponding concentrations of ions at
saturation are shown in Fig. 19.
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Fig. 16 Calculated and experimental activity of water in solutions saturated with mixtures of NaNO3 and
NaCl at 90 °C with varying compositions. The solid phases that coexist with the saturated solutions are
indicated along the water activity curve. The data are from Carroll et al. [7]

Fig. 17 Concentrations of ions in the system NaNO3–NaCl–H2O along the solid–liquid saturation line at
90 °C. The data are from Carroll et al. [7]

The system NaCl–KNO3–H2O (Figs. 20, 21) exhibits a somewhat more complex behav-
ior although the experimentally observed patterns are partially obscured by higher experi-
mental uncertainties for this mixture. In this case, the vapor pressure curve shows two break
points, which correspond to the transition from KNO3(s) to KCl(s) and then from KCl(s)
to NaCl(s) as sodium nitrate is progressively replaced by sodium chloride in the saturated
solution. This transition is consistent with the SLE diagram in Fig. 15. The predicted water
activities (Fig. 20) and equilibrium ionic compositions (Fig. 21) agree with the data within
the experimental uncertainty.
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Fig. 18 Calculated and experimental [7] activity of water in solutions saturated with mixtures of NaNO3
and KNO3 with varying compositions at 90 °C. The solid phases that coexist with the saturated solutions are
indicated along the water activity curve

Fig. 19 Concentrations of ions in the system NaNO3–KNO3 along the solid–liquid saturation line at 90 °C.
The data are from Carroll et al. [7]

5.4 Comparison with the New Isopiestic Data

The isopiestic measurements reported here simultaneously reflect two fundamental prop-
erties of the system: the activity of water as a function of solution concentration and the
occurrence of solid–liquid transitions. Thus, the isopiestic data provide a stringent test of
the model’s capability to represent simultaneously the vapor-liquid and solid–liquid equi-
libria. Figures 22–26 compare the calculated and experimental water activities (upper dia-
grams) and osmotic coefficients (lower diagrams) for the systems defined in Table 1. While
the water activity is of direct interest for studying deliquescence, osmotic coefficients are
more convenient for analyzing the data, in particular at lower concentrations. This is due to
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Fig. 20 Calculated and experimental [7] activity of water in solutions saturated with mixtures of NaCl and
KNO3 with varying compositions at 90 °C. The solid phases that coexist with the saturated solutions are
indicated along the water activity curve

Fig. 21 Concentrations of ions in the system NaCl–KNO3–H2O [7] along the solid–liquid saturation line at
90 °C

a stronger variability of osmotic coefficients at lower concentrations, at which water activi-
ties do not differ much from unity.

The systems in Figs. 22–26 have been grouped according to their increasing complexity.
In all cases, calculations were performed by increasing the total apparent mole fraction of
the salt from zero (or reducing the apparent mole fraction of water from one) while keep-
ing the ratios of the various salts as defined in Table 1. Here, the apparent mole fraction is
defined by including the salts and water in both the solution and in the various solid phases
that may precipitate. The apparent mole fraction is identical to the mole fraction in the so-
lution only if there is no solid phase in the system. Once a solid phase precipitates, the plot
of water activity or osmotic coefficient against the apparent mole fraction exhibits a change
in slope due to the appearance of a solid phase. The points at which new solid phases start



748 J Solution Chem (2007) 36: 723–765

Fig. 22 Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower di-
agram) of single-salt systems at 140 °C. The system numbers correspond to the solutions defined in Table 1.
The arrows indicate the total system composition at which a given solid phase is predicted to precipitate

to precipitate are shown by arrows in Figs. 22–26 and the compositions of the solids are
indicated next to the arrows. It should be noted that the solids identified in the plots have
been determined from the thermodynamic model. The isopiestic measurements do not pro-
vide information on the chemical identity of the solid phase. The breaks are typically more
pronounced on the osmotic coefficient plots, especially at lower concentrations. Starting at
the precipitation point, the apparent mole fraction ceases to be equivalent to the solution
composition and the calculated water activity starts to reflect the property of a solid–liquid
assembly.

First, Fig. 22 summarizes the results of calculations for simple binary solutions contain-
ing NaCl, Mg(NO3)2, LiCl, CaCl2 and Ca(NO3)2 (samples 1, 3, 6, 11 and 12 in Table 1).
Once a solid phase precipitates (as indicated by the vertical arrows), the water activity be-
comes constant. This is a consequence of the phase rule. The constant water activities are
shown as horizontal portions of the curves in Fig. 22. Since the model was calibrated us-
ing extensive experimental data for binary systems (cf. Table 3), the obtained agreement



J Solution Chem (2007) 36: 723–765 749

Fig. 23 Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower di-
agram) for two systems containing the nitrates of Na, K, Ca, and Mg at 140 °C. The system numbers corre-
spond to the solutions defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a
given solid phase is predicted to precipitate

between the calculations and experimental data is not surprising and simply verifies the
consistency of the new isopiestic data with earlier thermodynamic data for the binary sys-
tems.

The differences in osmotic coefficients between the new experimental data and the
present model for LiCl and Ca(NO3)2, reaching 0.12, or nearly 10% for the latter, appear to
be larger than expected for binary systems. However, in contrast to lower temperature data,
at temperatures above 373.15 K and at high concentrations, especially for hygroscopic com-
pounds, differences of several percent between sets of osmotic coefficient data are rather
typical. Due to the difficulty, and hence the scarcity of vapor pressure measurements by any
method at these conditions, the model equations depend strongly on the quality of the few
best literature data sets. Notable sources of experimental error include water and other impu-
rity content in the salts, and the presence carbon dioxide and other non-condensable gases.
Whereas the water activities used in this work were obtained using our recent thermody-
namic model [5] for aqueous CaCl2 as the reference, the present model was not revised
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Fig. 24 Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower di-
agram) for three systems containing various combinations of the Na+, K+, NO−

3 and Cl− ions at 140 °C.
The system numbers correspond to the solutions defined in Table 1. The arrows indicate the total apparent
salt mole fraction at which a given solid phase is predicted to precipitate

to include these results. In addition, there were small deviations between water activities
and osmotic coefficients calculated using (a) CaCl2 reference, (b) LiCl reference, and (c)
direct pressure measurements. The largest difference between the osmotic coefficients for
LiCl calculated using the CaCl2 reference [5] and those calculated using directly measured
pressures was 0.052 at 25.7 mol·kg−1 (the average difference was 0.021). The difference
between the LiCl model used in this work and our earlier unpublished results exceeds 0.05
even at much lower molality (7 mol·kg−1). Thus, we conclude that the discrepancy between
the measured and calculated osmotic coefficients seen in Fig. 22 is the result of a somewhat
unfortunate combination of experimental errors inherent in both the present results and the
representation of earlier literature results.

A more stringent test of the model is provided by the multicomponent systems. Figure 23
shows the results for two systems containing only nitrates, i.e., the ternary system NaNO3–
KNO3–H2O (sample 10) and the quinary mixture NaNO3–KNO3–Ca(NO3)2–Mg(NO3)2–
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Fig. 25 Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower di-
agram) for two systems containing the Ca2+, Mg2+, Cl− and NO−

3 ions at 140 °C. The system numbers
correspond to the solutions defined in Table 1. The arrows indicate the total apparent salt mole fraction at
which a given solid phase is predicted to precipitate

H2O (sample 4). In ternary and higher-order systems, precipitation of a solid phase does not
lead to a constant value of water activity. Instead, a change in slope is observed. In the case of
these two nitrate systems, two discontinuous slope changes occur. The first one is associated
with the transition from a one-phase to a two-phase (i.e., liquid+ NaNO3(s)) system and the
second one reflects a change from a two-phase to a three-phase system as indicated by the
arrows in Fig. 23. The model accurately predicts the water activities including the change
in slope and the exact composition of the system at which the transition occurs. Thus, the
model makes it possible to identify the phases that precipitate as the total salt fraction is
increased.

Figure 24 groups the results for three systems containing chlorides and nitrates of sodium
and potassium (samples 2, 7 and 8). As with the nitrate-only systems, the water activities and
the accompanying phase transitions are accurately predicted by the model. The transitions
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Fig. 26 Calculated and experimental water activities (upper diagram) and osmotic coefficients (lower dia-
gram) for a system containing a combination of the Na+, K+, Ca2+, Mg2+, Cl− and NO−

3 ions at 140 °C.
The solution is defined in Table 1. The arrows indicate the total apparent salt mole fraction at which a given
solid phase is predicted to precipitate

for the quaternary system NaCl–NaNO3–KNO3–H2O appear to be particularly complex. In
this case, the system transitions from a liquid to a liquid + NaCl(s) mixture, then to liq-
uid + NaCl(s) + KCl(s), then to liquid + NaCl(s) + KCl(s) + KNO3(s) and, finally, to
liquid + KCl(s) + KNO3(s). Figure 25 shows the results for mixed chloride–nitrate sys-
tems containing calcium and magnesium rather than sodium and potassium. Water activity
drops to substantially lower values in calcium and magnesium salts before saturation is
achieved. In this case, saturation results in the formation of hydrated double salts such as
MgCl2 · 2CaCl2 · 6H2O. As with the Na–K–Cl–NO3 system, transitions of the type liquid
→ liquid + solid A are followed by transitions of the type liquid + solid A → liquid
+ solid A + solid B. The predicted water activities are in very good agreement with the
data.

Finally, Fig. 26 shows the results for a six-component system that contains all ions that
are the subject of this study (i.e., Na+, K+, Ca2+, Mg2+, Cl− and NO−

3 ). As indicated in
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Table 1, the mixture was actually made from eight salts in addition to water (i.e., NaCl, KCl,
NaNO3, KNO3, CaCl2, MgCl2, Ca(NO3)2 and Mg(NO3)2). However, the system contains
six independent components in the sense of the phase rule. Because of its complexity, this
system exhibits four transitions as indicated by the vertical arrows in Fig. 26. At very high
total apparent salt fractions (above ca. 0.6), the predicted water activities are somewhat less
accurate, which might indicate that a different solid phase precipitates at some conditions
(possibly a double or triple salt that does not occur in simpler systems).

6 Conclusions

A comprehensive model has been established for calculating the thermodynamic properties
of Na–K–Mg–Ca–Cl–NO3 systems. The parameters of the model have been determined
using a combination of an extensive literature database and new isopiestic measurements
that provide important information for multicomponent systems at elevated temperatures
(140 °C).

The experimental method based on the use of the ORNL gravimetric isopiestic apparatus
allows for the detection of solid phase precipitation and therefore a definitive determination
of complete relative humidity versus composition phase diagrams. For salt mixtures sev-
eral samples are needed to cover the entire range of compositions, however, one sample is
sufficient for determination of the mixture deliquescence RH.

The model has been shown to provide accurate predictions of thermodynamic proper-
ties in wide ranges of temperature (from the freezing point to 300 °C) and concentration
(from infinite dilution to the melting point). In particular, the model comprehensively re-
produces solid–liquid equilibria and water activities in binary, ternary and higher-order sys-
tems. Also, the model accurately reproduces the new isopiestic data, including the changes
in the slope of water activity versus the total salt mole fraction. These changes in the
slope reflect the precipitation of various solid phases, thus providing a stringent test for
the model.

The Na–K–Mg–Ca–Cl–NO3 mixtures provide a good approximation of the behavior of
deliquescing systems. Among the common anions that occur in nature, chlorides are the
most important aggressive species and nitrates are important inhibitors in the corrosion of
nickel-base alloys and stainless steels. Thus, the concentration of chlorides and nitrates is
particularly important for predicting materials performance. Compared with the Cl− and
NO−

3 ions, other anions (e.g., hydroxides and carbonates) are expected to occur in lower
concentrations in deliquescing systems. Most of the other oxygen-containing anions have
weak inhibitive properties. However, their inhibitive behavior is much less pronounced than
that of nitrates and, therefore, their role in corrosion phenomena is less significant. Whereas
the inclusion of anions such as OH−, CO2−

3 and SO2−
4 is beyond the scope of this study, the

mixed-solvent electrolyte model can be relatively easily extended to achieve a more general
coverage of solution chemistry.
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