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Modeling Self-diffusion in Multicomponent Aqueous Electrolyte
Systems in Wide Concentration Ranges

Andrzej Anderko* and Malgorzata M. Lencka
OLI Systems Inc., 108 American Road, Morris Plains, New Jersey 07950

A comprehensive model has been developed for calculating self-diffusion coefficients in
multicomponent aqueous electrolyte systems. The model combines contributions of long-range
(Coulombic) and short-range interactions. The long-range interaction contribution, which
manifests itself in the relaxation effect, is obtained from the dielectric continuum-based mean-
spherical approximation (MSA) theory for the unrestricted primitive model. The short-range
interactions are represented using the hard-sphere model. In the combined model, agqueous
species are characterized by effective radii, which depend on the ionic environment. For
multicomponent systems, a mixing rule has been developed on the basis of phenomenological
equations of nonequilibrium thermodynamics. The effects of complexation are taken into account
by combining the diffusivity model with thermodynamic speciation calculations. The model
accurately reproduces self-diffusivities of ions and neutral species in aqueous solutions ranging
from infinitely dilute to concentrated (up to ca. 30 mol/kg of H,0). Also, the model makes it
possible to predict diffusivities in multicomponent solutions using data for single-solute systems.

Introduction

Self-diffusion coefficients in aqueous solutions are
needed to understand mass-transfer processes in a
variety of industrial, primarily electrochemical, systems.
Therefore, there is a need for an accurate method for
predicting self-diffusivity in wide ranges of chemical
composition, concentrations, and temperature. In this
work, self-diffusion is defined according to Mills and
Lobo (1989), who used this term to cover both intradif-
fusion and tracer diffusion in electrolyte solutions,
primarily because the term “self-diffusion” is in general
usage in the electrochemical literature.

The concentration dependence of transport coeffi-
cients, including self-diffusivity, has been one of the
most important problems in the statistical mechanics
of electrolyte systems. It has been extensively studied
for dilute solutions. A limiting law for several transport
coefficients was developed by Onsager and Fuoss (1932)
using the Debye—Huickel (1924) equilibrium distribution
functions. This law was later extended to self-diffusivity
in ionic mixtures by Onsager and Kim (1957). More
recently, Bernard et al. (1992) combined the Onsager
continuity equations with equilibrium correlation func-
tions calculated from the mean-spherical approximation
(MSA) theory. The MSA theory of transport properties
is valid up to the limit of the primitive model of
electrolyte solutions, i.e., for concentrations ranging
from infinite dilution to ca. 1 M. However, no theory is
available for more concentrated electrolyte solutions. It
seems evident that a diffusivity model for concentrated
solutions cannot rely exclusively on the primitive model,
which approximates the behavior of the solution by that
of ions in a dielectric continuum.

In contrast to electrolyte solutions, the diffusivity
theories for nonelectrolyte mixtures have been based
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mostly on hard-sphere theories (cf. reviews by Dymond,
1985; Tyrrell and Harris, 1984). The hard-sphere
theories originated from the work of Enskog and Chap-
man (Chapman and Cowling, 1952) on transport prop-
erties of nonideal gases. The Enskog theory was
extended to dense fluid mixtures by Tham and Gubbins
(1971) and van Beijeren and Ernst (1973). Corrections
to the Enskog theory were introduced on the basis of
molecular dynamics simulations (Czworniak et al.,
1975). Also, the hard-sphere theory has been extended
to systems with more realistic intermolecular potentials
(Ruckenstein and Liu, 1997). However, no attempt has
been made to extend the hard-sphere theories to sys-
tems with Coulombic interactions.

The objective of this work is to develop an engineer-
ing-oriented model for calculating self-diffusivity in
multicomponent systems that are of interest for indus-
trial applications. We propose a model that utilizes
results from the hard-sphere theory and the MSA theory
for the unrestricted primitive model. The model is
developed to satisfy several practical requirements:

(1) It should be applicable to systems ranging from
infinitely dilute to very concentrated.

(2) It should predict the self-diffusivity of all species
in multicomponent solutions using information obtained
from data for single-solute systems.

(3) When combined with a realistic thermodynamic
speciation model, the diffusivity model should give
accurate results for systems that involve complexation,
hydrolysis, and other possible reactions in solution.

After developing a model that satisfies these require-
ments, we apply it to several systems with different
chemical characteristics.

Computation of Self-diffusion Coefficients at
Infinite Dilution

Self-diffusion coefficients at infinite dilution provide
a starting point for the computation of diffusivities at
finite concentrations. Therefore, prior to developing a
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Figure 1. Diffusion coefficients of hydrogen and oxygen in pure
water. The solid lines have been obtained from eq 3 with
parameters listed in Table 1.

model for diffusivity in wide concentration ranges, it is
necessary to establish a reliable procedure for calculat-
ing infinite-dilution diffusion coefficients.

In the case of ions, self-diffusion coefficients (D°) are
related to equivalent limiting diffusivities (1°) by the
Nernst—Einstein equation, i.e.,

o_ RT.,o
D°= 1)

where R, F, and z are the gas constant, Faraday
constant, and ionic charge, respectively. The limiting
ionic conductivities and, equivalently, the limiting dif-
fusivities are strongly dependent on temperature. In
the dense liquid-phase region at temperatures up to ca.
550 K, the temperature dependence of A° can be ac-
curately reproduced using Smolyakov’s (1969) equation,
i.e.,

In A°%T) p(T)=A+BIT 2)

where 7 is the viscosity of pure water and A and B are
adjustable constants. Anderko and Lencka (1997) tabu-
lated the A and B constants for ions for which experi-
mental data are available over wide temperature ranges.
Also, Anderko and Lencka (1997) developed a correla-
tion between parameter B (eq 2) and the structural
entropy of ions, which makes it possible to predict the
temperature dependence of A% with good accuracy when
experimental data are available only at a single tem-
perature (e.g., at ambient conditions).

In this study, we extend the applicability of eq 2 to
the diffusivity of neutral molecules in water. Combina-
tion of eqs 1 and 2 yields

0
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In eq 3, the pure water viscosity # is calculated as a
function of temperature using the equation of Watson
et al. (1980). Equation 3 has been found to reproduce
the temperature dependence of limiting diffusivities of
neutral species within experimental uncertainty. This
is illustrated in Figures 1 and 2 for H,, O,, and H,0O,
which are the essential neutral species in aqueous
systems. It should be noted that diffusivities of neutral
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Figure 2. Self-diffusion coefficients of H,O. The solid lines have
been obtained from eq 3 with parameters listed in Table 1. The
symbols are the values recommended by Mills and Lobo (1989).

species are much more uncertain than those of ions and,
therefore, substantial scattering of experimental data
is observed in Figure 1. In the case of H,0, no
scattering is observed (cf. Figure 2) because only the
values recommended by Mills and Lobo (1989) have
been used. The values of the C and B parameters in eq
3 are collected in Table 1 for a number of common
neutral solutes in water.

Experimental limiting diffusivity (or conductivity)
data are usually available only for simple, ionic, or
neutral species (cf. Anderko and Lencka, 1997, and
Table 1). At the same time, complex species such as
Me(X™"), play an important role in aqueous systems of
industrial interest. Diffusivities of such species are
difficult to measure because complexes always occur
together with simple species (i.e., Me?t and X™~) and
experimental diffusion data are usually a manifestation
of the diffusion of both simple and complex species.
Therefore, it is necessary to establish a reasonable
procedure for estimating limiting diffusivities of complex
species from those of simple species. In a previous study
(Anderko and Lencka, 1997), a technique was proposed
for estimating the limiting conductivities of complex ions
using the additivity of Stokes volumes of ions. In this
work, this technique is extended to both charged and
uncharged species.

The Stokes radius of a species at infinite dilution is
related to its limiting diffusivity, i.e.,

_ kT
673D;

(4)
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It can be postulated that the volume of a hydrated
complex species is, to a first approximation, equal to the
sum of hydrated volumes of the constituent simple
species. Since the Stokes radius is a measure of the
size of a hydrated species, the cube of the Stokes radius
of a complex (reomplex,s) can be approximated by the sum
of the cubes of Stokes radii of the constituent simple
species (rig), i.e.,

n

3 _ 3
r-complex,s - Zri,s (5)
=

where n is the number of simple species that make up
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Table 1. Parameters of Equation 3 for the Infinite-Dilution Diffusion Coefficient of Neutral Species in Water

species C B experimental data source

H>0 —33.13 156.2 Mills and Lobo (1989)

H, —32.02 26.12 Gubbins et al. (1966), Tham et al. (1970), Wise and Houghton (1966), Ferrell
and Himmelblau (1967), Verhallen et al. (1984), de Blok and Fortuin (1981)

(o)) —32.60 —19.88 Tham et al. (1970), Himmelblau (1964), Verhallen et al. (1984), Ferrell and
Himmelblau (1967), Wise and Houghton (1966)

N2 —32.30 —75.90 Wise and Houghton (1966), Ferrell and Himmelblau (1967), Verhallen et al. (1984)

Cly —31.44 —460.5 Himmelblau (1964), Landolt—Bdrnstein (1969)

He —32.28 231.2 Wise and Houghton (1966), Ferrell and Himmelblau (1962), Verhallen et al. (1984)

Ne —32.25 37.66 Akgerman and Gainer (1972)

Ar —29.46 —-947.5 Akgerman and Gainer (1972)

Xe —33.47 95.31 Unsworth and Gillespie (1969)

Kr —33.10 65.07 Unsworth and Gillespie (1969)

N2O —33.67 270.3 Landolt—Bornstein (1969), Akgerman and Gainer (1972)

NO —26.04 —1855 Akgerman and Gainer (1972)

NO- —33.24 39.03 Akgerman and Gainer (1972)

NHS3 —32.30 -121.1 Himmelblau (1964)

CHgy —33.53 201.2 Gubbins et al. (1966)

CoH> —34.95 656.7 Himmelblau (1964)

CoHe —33.27 217.6 Wise and Houghton (1966)

CsHsg —32.85 33.14 Wise and Houghton (1966)

CsH1o —30.54 —-731.7 Wise and Houghton (1966)

a complex. By substituting eq 4 into eq 5, a relationship
for the limiting diffusivity of a complex is obtained:

D(c)omplex =y 7 A (6)

Equation 6 will be further used to estimate the limiting
diffusivities of complex species.

Concentration Dependence for Single
Electrolytes

In relatively dilute electrolyte solutions, the main
effects that determine the deviations of transport prop-
erties from ideal behavior are the relaxation and elec-
trophoretic effects (Robinson and Stokes, 1959). In the
case of self-diffusion, the only relevant contribution is
the relaxation effect, which represents the return to
equilibrium after a perturbation by an external force
(ki). In general, the effect of the relaxation forces on
the variation of the self-diffusion coefficient from its
value at infinite dilution is given by

D, = DY(1 + okj/k;) 7)

where Jki/k; is the relaxation term. Recently, Bernard
et al. (1992) developed an expression for oki/k; for the
unrestricted primitive model, i.e., a system of ions with
different sizes in a dielectric continuum. Bernard et al.
(1992) and Chhih et al. (1995) demonstrated that eq 7
gives good agreement with experimental data for mono-
valent ions at concentrations up to ca. 1 M.

However, the concentrations that are of interest for
industrial applications range from 0 to ca. 30 M. As
the concentration is increased, representation of trans-
port phenomena in terms of the primitive model be-
comes insufficient. In systems with substantial ionic
concentration, the long-range interionic forces are ef-
fectively screened to short range by patterns of alternat-
ing charges. Then, interionic forces can be combined
with all other interparticle forces on the same basis
(Pitzer, 1980; Pitzer and Simonson, 1986). Thus, all
interparticle forces in concentrated solutions can be
effectively treated as short-range forces, and the solution

properties can be calculated by methods similar to those
for nonelectrolytes. At the same time, the alternating
charge pattern and its accompanying screening effect
are lost in the dilute solution range and, therefore, the
effects of long-range electrostatic interactions are sig-
nificant at low concentrations. This rationale was used
by Pitzer (1980) and Pitzer and Simonson (1986) to
develop thermodynamic models by combining a long-
range electrostatic interaction term with terms devel-
oped for nonelectrolyte solutions. Here, we use the
same concept to postulate a general model for self-
diffusivity in systems ranging from dilute to concen-
trated.

In the case of self-diffusion, the relaxation effect is a
manifestation of long-range electrostatic interactions.
The concentration dependence of self-diffusion in con-
centrated solutions can be, at the same time, repre-
sented by the hard-sphere theory, which is adequate for
nonelectrolyte solutions. To combine these two effects,
eq 7 can be rewritten by introducing a factor that
accounts for the concentration dependence of self-
diffusivity on the basis of the hard-sphere theory, i.e.,

% D' ok;
D, = D o 1+~ (8)

In eq 8, the D[™/DY factor becomes significant for
concentrated solutions. For relatively dilute solutions,
eq 8 can be expected to reduce to eq 7.

In this study, we use the relaxation term from the
work of Bernard et al. (1992) and Chhih et al. (1995)
and the hard-sphere term from the extension of the
Enskog theory developed by Tham and Gubbins (1971).
Then, we introduce the concept of effective ionic radii
in aqueous solutions to reproduce self-diffusivities over
wide concentration ranges.

Relaxation Effect. To calculate the relaxation term
in eq 8, we use the expressions developed by Bernard
et al. (1992) and Chhih et al. (1994) for a tracer ion in
an electrolyte containing one cation and one anion at
finite concentrations. Specifically, we utilize the simpli-
fied form of Chhih et al. (1994), in which the average
size approximation is used for the ionic sizes. According
to Chhih et al. (1994), the relaxation term for a tracer
ion i is given by
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where z; is the ionic charge, e is the charge of the
electron, ¢o is the permittivity of vacuum, kg is the
Boltzmann constant, and ¢ is the dielectric constant of
pure water. The value of ¢ is calculated from the
equation of Uematsu and Franck (1980). Ineq 9, o is
the average ion diameter defined by
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where pj and oj are the number density and the diameter
of the jth ion, respectively. The parameters « and «g;
are given by
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and T is the MSA screening parameter, calculated in
the mean diameter approximation as

K

2(1 +To) (13)
According to eqs 9—13, the relaxation term can be
computed if the ion diameters are known. Also, the
density of the solution has to be known in order to
calculate the number densities of ions.

Hard-Sphere Model. In general, the diffusion coef-
ficient in a hard-sphere system can be expressed as
(Dymond, 1985; Czworniak et al., 1975; Ruckenstein
and Liu, 1997)

Di*® = D; ensACi0:M,5.%) (14)
where D; ens is the diffusion coefficient calculated from
the Enskog theory of smooth hard spheres (Chapman
and Cowling, 1952), A; accounts for translation—rotation
coupling resulting from deviations of molecular surfaces
from sphericity, and Ci(p,M,5,X) is an empirical correc-
tion factor that compensates for the neglect by the
Enskog theory of correlated motions in hard-sphere
fluids. Ineq 14, p is the number density and M, &, and
x are the vectors of molecular weights, diameters, and
mole fractions, respectively. To utilize eq 14 for aqueous
electrolyte solutions, we note that eq 14 can be con-
strained to match the diffusion coefficients at infinite
dilution. This is advantageous because the infinite-
dilution diffusivities are known with sufficient accuracy
from experimental sources and do not have to be
predicted from the hard-sphere theory. Therefore, we
rewrite eq 14 for the diffusion coefficient of species i at
infinite dilution:
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DiO = DRENsAiC?(POJ\_/lva) (15)

There is theoretical and experimental evidence that the
parameter A; is independent of solution composition and
density (Czworniak et al., 1975). Therefore, it is the

same in eqgs 14 and 15 and D:*S can be expressed as

¢ Di,ENS C(pamaai)_()
ID?,ENS CO(POvaa)

D = (16)

To evaluate the ratio Di,ENS/D?’ENS, we utilize the
extension of the Enskog theory to dense fluid hard-
sphere mixtures developed by Tham and Gubbins
(1971). For the diffusion coefficient of a tracer ion i in
a solution containing a cation j, an anion k, and a
solvent s, a closed-form expression was given by Tham
and Gubbins (1972):

gi Oik Ois| ™t
Diens = ’ d” + X, o, +x ‘d. (17)

where gj; is the radial distribution function at contact
for rigid spheres of diameters o; and oj and dj; is the
dilute gas diffusion coefficient for a mixture of molecules
i and j. The dj; coefficients in eq 17 are given by

_ 3 [(Mi—i-Mj)RT 12
i ggijzp[ 27M;M,

(18)
where p is the number density and the average diameter
oij is defined as

0 = (0; + 0))12 (19)

The radial distribution function in eq 18 is calculated
from the equation of Boublik (1970):

1 30i0; &,
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i I
&= EPZXkUk (21)

In contrast to the Di,ENs/D?’ENS term, no analytical
theory is available for the evaluation of the Ci(p,M,5,X)/
C%(e°M,5) term in eq 16. The correction factor Cj-
(p,M,5,X) may be obtained from molecular dynamics
simulations as a function of density for pure fluids
(Ruckenstein and Liu, 1997) or two-component mixtures
(Czworniak et al., 1975). However, no data are avail-
able for systems with more than two components. In
the case of aqueous solutions well below the critical
point, the number densities p and po are reasonably close
to each other. Since considerable density variations are
necessary to cause a significant effect on the correction
factors, it may be expected that the factors Ci(p,M,5,X)
and C?(pO,M,B) in eq 16 partially cancel each other.
Therefore, we make an assumption that the Ci(p,M,o,X)/
C?(pO,M,a) ratio in eq 16 can be approximated by 1.
The error introduced by this assumption cannot be, at
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present, reliably estimated. However, the viability of
this assumption can be verified by the empirical ef-
fectiveness of the final diffusivity model.

Thus, a working equation for the hard-sphere diffu-
sion coefficient in a solution can be obtained from eq 16
by calculating the Djgns and D?ENS terms from eq 17
applied to the solution and pure solvent, respectively.
The result is

D di
1 = (22)
b? x% + X Ik + X s
Jdij kdik Sdis

where the superscript 0 denotes pure water at the same
conditions of temperature and pressure as the solution.

The final expression for the diffusion coefficient of an
ion in a single-electrolyte solution is obtained by sub-
stituting eqs 9 and 22 into eq 8. In the case of a neutral
species, the relaxation term (eq 9) is equal to zero and
the diffusion coefficient expression (eq 8) becomes
identical with eq 22.

Effective lonic Radii. The only species-dependent
parameters in the expression for the self-diffusion
coefficient (egs 8, 9, and 22) are the ionic diameters. As
a first approximation, crystallographic diameters can
be used to estimate the size of ions in the solution. In
fact, this approximation is reasonable for relatively
dilute solutions (cf. Bernard et al., 1992). However, it
becomes less accurate as the concentration increases.
Notably, a change in viscosity at higher concentrations
entails a changing ionic mobility, which is a manifesta-
tion of altered solvation structure and short-range
interactions between ions. These effects can be taken
into account by assuming an effective ion size, which is
a function of a changed ionic environment in a concen-
trated solution. Therefore, we introduce an effective
diameter, which is calculated by averaging over the
effects of neighboring species on the central species.
Accordingly, the effective diameter of a species i is
postulated to be

zcjoio)
o
z

where o accounts for the effect of species j on the
effective diameter of species i. The ojj; parameter has
the meaning of a molecular or ionic radius (i.e., half of
the diameter). For consistency, oig is equal to the
crystallographic radius of species i. Also, the value of
ois), Where s denotes the solvent, can be assumed to be
equal to the crystallographic radius of i. In this way,
the effective diameter becomes equivalent to the crys-
tallographic one in dilute solutions. It may increasingly
deviate from the crystallographic diameter as it becomes
more affected by unlike ions in concentrated solutions.

If necessary, the parameters o5 may be treated as
adjustable quantities that reflect the interactions of
species i and j. When it is not necessary to adjust the
value of ojj, it remains at its default crystallographic
value.

0j

(23)

Concentration Dependence for Multicomponent
Systems

The equation for the concentration dependence of self-
diffusion coefficients (eq 8) can be applied only to single-
solute systems because the MSA expression for the
relaxation effect has been developed for systems con-
taining only a single anion and a single cation in the
solution. An analytical theory for multicomponent
systems can be obtained only for very dilute solutions
(Onsager and Kim, 1957). Therefore, it is necessary to
develop a technique for predicting the diffusivities of
multicomponent solutions in the full concentration
range of industrially important systems. Specifically,
we are seeking a mixing rule that will make it possible
to calculate diffusivities in a multicomponent solution
using the diffusivity values obtained from egs 8, 9, and
22 for constituent single-solute solutions.

For this purpose, we consider general phenomenologi-
cal equations that relate the fluxes of species in a
solution to chemical potential gradients. In the Stefan—
Maxwell formalism, these equations are given by

RT M [%di — X
XV =—y [

C = au

i=1,..n (24)

where C is the total concentration in moles per unit
volume and u; and J; are the chemical potential and flux
of species i, respectively. Graham and Dranoff (1982)
and Pinto and Graham (1986) found that the phenom-
enological interaction coefficients of eq 24 (i.e., a;;) are
only weakly concentration-dependent and are indepen-
dent of the other species present in the system. Thus,
eq 24 provides a suitable starting point for developing
a mixing rule.

Equation 24 can be simplified by considering the
diffusion of a tracer species i in a mixture containing n
species. Since the flux of species other than the tracer
is zero, eq 24 becomes

Ji=—— Vi (25)

In the case of tracer diffusion, the chemical potential
gradient is

Vu;

(26)

By combining egs 25 and 26 and taking into account
that Ji = —D;Vci, we obtain an expression for the
diffusion coefficient, i.e.,

D, = 27)

To derive a mixing rule from eq 27, we assume that
the mixture contains N cations, N, anions, and Ny
neutral species. Then, the self-diffusion coefficient of
tracer i can be written as
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where the mole fractions from eq 27 have been replaced
by mole numbers. In eq 28, nt is the total number of
moles of all components and the subscript s denotes the
solvent. Without any loss of generality, the cations and
anions can be formally separated into N¢N, neutral
solutes containing only one cation and one anion. Then,
the material balances for the jth cation and the kth
anion can be written as

NcNa

n, = ;ndvj(d) i=1,....N, (29)

NeNa

ne= ;\ NaVi()

where the subscript d denotes the dth solute and v
and vy(q) are the stoichiometric numbers of cation j in
solute d and anion k in solute d, respectively. Similarly,
the total number of moles of the solvent can be divided
between the solutes, including the neutral species
dissolved in the system:

k=1,..N, (30)

NeNa

= dzl sa) T Z s (31)

Thus, each of the N¢N, solutes can be envisaged, in a
thought experiment, to form a solution with nsgqy moles
of the solvent. The diffusion coefficient of tracer i in a
hypothetical solution containing only solute d and ngq)
moles of the solvent is

D _ nS(d) + n+(d) + n_(d) (32)
=
D e Mg, N

a a,

1S 1—

where nig and n-g) are the numbers of moles of the
cation and anion in the solution that contain the solute
d. The quantities niq and n_gq) are related to the
number of moles of solute d by

Ni@) = Na¥+(q) (33)
and
—(d) ndV_(d) (34)

where v4q) and v—q) are the stoichiometric numbers of
the cation and anion in solute d, respectively. Similarly
to eq 32, we envisage a hypothetical single-solute
solution containing only the neutral species |I. The
diffusion coefficient of tracer i in this solution is

Dipy = ———— 35
i(l) M_i_ﬂ (35)

Qs &
Equations 32 and 35 can be rearranged to express the

coefficient D; in a multicomponent mixture in terms of
the coefficients Djqy and Dijqy. For this purpose, we
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calculate a sum of the denominators of eqs 32 and 35
for all N¢Nj ionic solutes and N, neutral species, i.e.,

NeNa ”s(d) M@y N-@| NNsgy Ny

SUM = LZ\ +—+ Z +—]=
- =1\ &is &
"Ny (a) Z Ns) N V) I b ) B

SESNSATA

The terms in the first set of square brackets can be
simplified to n¢/ajs using eq 31. To evaluate the term
in the second set of square brackets, we note that the
subscript (+) indicates any cation, which is equivalent
to taking a sum over all cations, i.e.,

N Naan) N¢ NandV+(d) Nc [N¢ NandVJ( d) Nec n j )
— (37
P Aa Al e | e,

The last equality in eq 37 was obtained using eq 29.
Also, a relationship similar to eq 37 holds for anions
(i.e., for the term in the third set of square brackets in
eq 36). Therefore, eq 36 becomes

ng Neny  Nang Nop,
SUM=—+ YY—+ ) —+ ) — (38)
s 185 k18 [
which is identical with the denominator of eq 28. From
eqs 28, 32, and 35, the quantity SUM is equal to

SUM———GZ\

Thus, we obtain the mixing rule for the diffusion
coefficient in a multicomponent solution:

Nanggy + N,

Di) =1 Dig
(39)

Nr
D; = (40)
NeNaNg ) + Ny T N_qy  Nangg + 1,

= D D

i(d) = i(l)
The coefficients Djq) and Djq in eq 40 can be computed
from egs 8, 9, and 22 at the same total number density
as that of the multicomponent mixture. In practical
calculations, the total number of moles (nt) can be
assumed to correspond to, e.g., 1 kg of solvent.
Equation 40 gives a formula for the computation of
the self-diffusion coefficient in a multicomponent mix-
ture that has been obtained by combining a number of
single-solute solutions. However, it does not specify how
the multicomponent solution of interest should be
subdivided into hypothetical single-solute solutions. For
this purpose, arbitrary assumptions have to be made.
To define the quantities ng and n-(), it is reasonable
to postulate that the amounts of the cation and anion
in the hypothetical single-solute solution should be
proportional to the concentrations of the cation and
anion in the multicomponent solution. Furthermore,
the hypothetical single-solute solution should be elec-
troneutral. These conditions are satisfied when the
numbers of moles of the cation and anion in the solute
d are calculated as
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_lzine
N = n+n—eq (41)

1z, In,
N_@=n-—; (42)

eq
where neq is the equivalent number of moles, i.e.,

Ne Na

Neq = an|zj| = kan|zk| (43)
& =

Finally, the number of moles of the solvent in the single-
solute system is selected so that the ionic strength of
the single-solute system is the same as that of the
multicomponent system, i.e.,

1 2 2
E(n+(d)z+ +n_yz-)

Ns@) = Vi; N (44)
_ 45
Ngyy = IT_VnS (45)

where It is a concentration measure that generalizes
the ionic strength by including the concentrations of
neutral solutes, i.e.,

N¢+Na

It = ; cizi® + gc, (46)

In contrast to eq 40, which has been derived from the
phenomenological formalism of transport phenomena,
eqs 41—46 are empirical and can be validated on the
basis of their effectiveness for reproducing experimental
data.

The final self-diffusivity model consists of egs 8, 9,
and 22 for single-solute systems and the mixing rule
for multicomponent solutions (eq 40) coupled with the
auxiliary relationships (41)—(46).

Results and Discussion

The performance of the self-diffusion model has been
tested for a large number of single-solute and multi-
component systems. First, calculations have been per-
formed for single-solute systems with simple speciation,
i.e., electrolytes that show complete dissociation and do
not form complexes. For such systems, the calculations
involve the use of egs 8, 9, and 22 without invoking the
mixing rule for multicomponent systems. Figures 3 and
4 show the diffusivities of aqueous species in LiCl and
CacCl; solutions, respectively. In the case of these salts,
relatively abundant experimental data are available
over wide concentration ranges for all solution species,
i.e., the cation, anion, and water. The concentration
scale in Figures 3 and 4 is shown as the square root of
molality to facilitate the comparison with experimental
data in dilute solutions. The limiting diffusivities of
ions have been calculated from egs 1 and 2 using the A
and B parameters obtained by Anderko and Lencka
(1997). For water, the limiting diffusivities have been
obtained from eq 3 with the parameters given in Table
1.

The dotted lines in Figures 3 and 4 show the results
obtained using only crystallographic diameters. The
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Figure 3. Self-diffusion coefficients of Li* and ClI~ at 298.15 K
and of H>O at 296.15 K in the LiCl + H,0 system. The solid lines
have been obtained from the model using the parameters from
Table 2. The dotted lines have been obtained using crystallographic
ion radii for all species. The symbols denote experimental data
from various authors cited by Mills and Lobo (1989), pp 97—110.
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Figure 4. Self-diffusion coefficients of Ca?* and Cl~ at 298.15 K
and of H,O at 296.15 K in the CaCl, + H>O system. The solid
lines have been obtained from the model using the parameters
from Table 2. The dotted lines have been obtained using crystal-
lographic ion radii for all species. The symbols denote experimental
data from various authors cited by Mills and Lobo (1989), pp 49—
51.

values of crystallographic diameters were taken from
Marcus (1985). As expected, a reasonable agreement
with experimental data has been obtained only for
relatively dilute solutions, i.e., for concentrations below
1 M. At higher concentrations, the model with crystal-
lographic parameters fails to reproduce the experimen-
tally observed rapid decrease of diffusivities with con-
centration. On the other hand, the model with effective
ionic diameters (eq 23) reproduces the data with very
good accuracy. This is shown by the solid lines in
Figures 3 and 4. To reproduce the data, two empirical
oig) parameters (cf. eq 23) have been adjusted. These
parameters represent the effects of the anion on the
effective diameter of the cation (e.g., ocacry) and vice
versa (e.g., ocica)). The parameters that are necessary
for the computation of the effective diameters are
collected in Table 2. All remaining oij parameters that



Table 2. Parameters gy (in A) Used for the
Computation of Effective Diameters of Species
According to Equation 23

species i species j Oi(j)

Ca?t Cl- 3.121

Cl- Ca?t 6.770

Lit Cl- 0.001

Cl- Lit 7.646 exp(—0.04641)2
Na* Cl- 0.001

Cl- Na* 5.012

Mg?*+ Cl- 0.292

Cl- Mg?* 18.813 exp(—0.06351)2
Na* 1~ 7.367

1~ Na* 2.930

CdcCI* H,0 2.097

CdClIy° H.0 2.462

CdCls?~ H.0 3.989

Cdl* H>0 0.001

Cdl° H,0 0.001

Cdlz~ H,0 0.001

Cdls2~ H>0 4.698

H* 1~ 0.001

1~ H+ 3.911

K+ OH~ 15.9187 exp(—0.09581)2

aThe ionic strength is defined as | = (Zzi%ci)/2, where ¢; is in
mol/dm3.

are needed to apply eq 23, but are not listed in Table 2,
have been assumed to be equal to the crystallographic
radii (e.g., those for water). Thus, only a small number
of adjustable parameters is necessary to reproduce the
data within essentially experimental uncertainty (as
evidenced by the scattering of data from different
authors in Figures 3 and 4). The adjusted ojj param-
eters are usually independent of temperature and
concentration. However, for a small number of systems
for which experimental data are available over wide
concentration ranges, selected o) parameters have been
found to depend on the ionic strength (cf. Table 2). In
such cases, a two-constant exponential function of ionic
strength is used for calculating o (cf. Table 2). For
example, the ocyi parameter depends on the ionic
strength, whereas the oy parameter does not. Thus,
a total of three adjustable constants is necessary to
reproduce the self-diffusivities of all solution species in
the LiCl + H,O systems over the whole concentration
and temperature range of experimental data. For the
CacCl;, + H,0 system, a total of two constants is needed.

It is noteworthy that the model uses the same
parameters to reproduce the concentration dependence
of self-diffusion coefficients of all solution species. This
indicates that the model is internally consistent. Thus,
it can be used to predict the diffusivities of all species
in a solution when experimental data are available for
only one species.

After verifying the performance of the model for
single-solute systems, calculations have been performed
for mixed systems that do not show any complexation.
Such calculations verify the mixing rule for multicom-
ponent systems (eq 40). Figure 5 shows the results for
the self-diffusion coefficients of H,O and Na™ in the
NaCl + MgCl, + H,O system. For this system, the
onacly and ocina parameters were regressed from
experimental data for the NaCl + H,0 system and the
omg(cly and ocigvg) Pparameters were obtained from data
for the MgCl, + H,O system. The dashed lines in
Figure 5 show the diffusivities in the single-solute
solutions containing NaCl and MgCl,. The solid lines
show the predicted diffusivities in a mixed solution with
a 1:1 ratio of NaCl to MgCl,. As shown in Figure 5, the
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Figure 5. Self-diffusion coefficients of Na™ and H,O at 298.15 K
in the NaCl + MgCl, + H,0 system. The lines have been obtained
for various NaCl/MgCl, ratios using the parameters from Table
2. The hollow circles and diamonds denote the experimental data
of Mills et al. for Na™ and CI~, respectively. The data were taken
from the compilation of Mills and Lobo (1989), pp 266—267.
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Figure 6. Self-diffusion coefficients of Cl~ at 298.15 K in the NaCl
+ MgCl, + H,0 system. The lines have been obtained for various
NaCl/MgCl, ratios using the parameters from Table 2. The
symbols denote the experimental data of Mills et al. (taken from
the compilation of Mills and Lobo, 1989, p 265).

diffusivities in the mixed solution are represented with
the same accuracy as those in the single-solute solu-
tions. It should be noted that no parameters were
adjusted to match the mixed-solution data. Also, Fig-
ures 6 and 7 show the predicted diffusion coefficients
of CI~ and Ca?" in the same system, respectively. In
this case, the results are shown for several NaCl/MgCl,
molar ratios.

The results shown in Figures 5—7 demonstrate that
the mixing rule (eq 40) is sufficiently accurate to predict
the diffusivities in mixed-electrolyte solutions. Consis-
tent results are obtained for all species in the solution.

For practical applications, it is particularly important
to calculate the diffusivities of species in systems
containing transition metals, which show appreciable
complexation. For systems with aqueous complexes, the
measured diffusion coefficients should usually be re-
garded as weighted averages of diffusion coefficients for
individual (simple and complexed) species. For ex-
ample, the self-diffusion coefficient of Cd in an agueous
CdCl; solution is an aggregate quantity that includes
the self-diffusivities of Cd?*, CdCI+, CdClI,°, CdCl;~, and
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Figure 7. Self-diffusion coefficients of Ca2" at 298.15 K in the
NaCl + MgCl; + H20 system. The lines have been obtained for
various NaCl/MgCl; ratios using the parameters from Table 2. The
symbols denote the experimental data of Mills et al. (taken from
the compilation of Mills and Lobo, 1989, p 264).

CdCl42~. At the same time, the measured diffusivity of
Cl includes the diffusivities of CI-, CdCI, CdCI.°,
CdCl;™, and CdCl42~. Although the diffusion coefficients
of individual complexes are not measurable, they can
be predicted using the proposed model. Therefore, it is
necessary to express the aggregate (measurable) diffu-
sion coefficients in terms of the diffusivities of individual
species.

Dunn and Stokes (1965) derived a formula that
relates the diffusion coefficient of a carboxylic acid to
those of the acid monomer and dimer. Here, we
generalize this formula to systems with any number of
complex species. Let us denote the diffusing species by
X. We assume that it can form a number of complexes
with a general formula Q;X;j where Q; denotes any
species or groups that are connected with i ions of X.
The total (measurable) flux of X is related to the fluxes
of individual complexes by

3= Yo @

where the subscript T denotes the total flux of X. By
inserting the Fick's law expressions into eq 47, we
obtain

Cx., _ dCqpx,
DXT a_z = ZIDQiXi ? (48)

Thus, the aggregate diffusion coefficient of X becomes

8chxi

DXT = ZIDQiXi E (49)
T

The derivative in eq 49 can be computed using a
thermodynamic speciation model. In this study, we use
the model developed by OLI Systems (Zemaitis et al.,
1986; Rafal et al., 1995).

Figure 8 shows the aggregate self-diffusion coef-
ficients for Cd and CI in addition to the coefficient for
H,0 in the CdCI, + H,0 system. The dotted lines have
been obtained by using crystallographic radii for solu-
tion species. In the case of complexes, the radii have
been estimated by assuming that the volumes of the
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Figure 8. Aggregate self-diffusion coefficients for cadmium- and
chloride-containing species (denoted by Cdror and Clyor,, respec-
tively) and HO in the system CdCl, + H;0. The solid lines have
been obtained from the model using the parameters from Table
2. The dotted lines have been obtained using crystallographic ion
radii for all species. The symbols denote the experimental data of
Mills and Hertz (taken from Mills and Lobo, 1989, pp 42—43).

2.0

-
o

<
<
~> NaCl
~T.x.

CaClO), e

T~

10°Dyrey /(M?s™)
)

Cd(CIO,),

o
n

0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

m

Figure 9. Aggregate self-diffusion coefficients for iodide-contain-
ing species in agqueous solutions of HI, NaCl, Ca(ClO4),, and Cd-
(ClOy4)2. The lines have been obtained from the model using the
parameters from Table 2. Experimental data for the Ca(ClO4),; and
Cd(ClQy4) solutions were taken from Turner and Matheson (cited
in Mills and Lobo, 1989, pp 55 and 47, respectively), those for HI
are from Mills and Kennedy (cited in Mills and Lobo, 1989, p 84),
and those for NaCl are from Stokes et al. (cited in Mills and Lobo,
1989, p 209).

complexes are equal to the sum of the volumes of the
constituent simple ions. As with uncomplexed solutes,
the predictions with crystallographic radii provide
reasonable estimates of diffusivities at relatively low
concentrations. The solid and dashed lines in Figure 8
have been obtained by adjusting the parameters
ocdclt(H,0) 0cdcl,YH,0), and ocdclzH,0)- These parameters
are listed in Table 2. As shown in Figure 8, the solid
and dashed lines reproduce the experimental diffusivi-
ties with good accuracy. The effects of complexation
manifest themselves in a steep decrease of the CI
diffusivity with concentration. Also, the aggregate
diffusivities of both Cd and CI tend to very low values
at high concentrations.

Figure 9 shows the effects of both weak and strong
complexation on the aggregate diffusivity of iodide ions
in several aqueous solutions. In the case of the HI
solution, the self-diffusivity of iodide ions moderately
decreases with concentration. In the case of NaCl, a
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Figure 10. Diffusion coefficients of oxygen in KOH solution as a
function of KOH molality. The lines have been obtained from the
model using the parameters from Table 2.

weak complex Nalag® is formed and somewhat reduces
the diffusivity at higher concentrations. In the Ca-
(ClQy4)2 solution, the initial decrease of Dt with concen-
tration is stronger than that in the case of NaCl because
the relaxation effect in 2:1 electrolytes (cf. eq 9) is
stronger than that in 1:1 electrolytes. Finally, Dt in
the Cd(ClO,), solution decreases very rapidly at low
concentrations because of strong complexation between
Cdand I. Itshould be noted that the experimental data
for the diffusion of iodides in NaCl, Ca(ClQO,),, and Cd-
(ClOy4)2 were not used to adjust any model parameters.
Only self-diffusion data in single-solute systems were
used to determine the o parameters that are collected
in Table 2.

The proposed model is also applicable to the diffusion
of neutral molecules (e.g., gases) in electrolyte solutions.
To verify this, calculations have been performed for the
diffusion of oxygen in KOH solutions. The results are
shown in Figure 10 for two temperatures. The experi-
mental data in Figure 10 show a significant degree of
scattering, which is common for gas diffusivities. The
calculated diffusivities agree with the data within
experimental uncertainty.

Conclusions

The proposed model accurately reproduces self-diffu-
sion coefficients of both ions and neutral species in
multicomponent aqueous solutions over wide concentra-
tion ranges. This is made possible by four important
features of the model, i.e., (1) a combination of the MSA
theory of the relaxation effect in electrolyte solutions
with the hard-sphere model of diffusion; (2) extension
of the applicability of the model to very concentrated
solutions through the introduction of effective diameters
of species; (3) a mixing rule for predicting self-diffusion
coefficients in multicomponent solutions using the coef-
ficients calculated for single-solute systems; and (4)
integration of the diffusivity model with a thermody-
namic speciation model, which makes it possible to
reproduce the effects of complexation or other reactions
in solution.

The model is applicable for molalities up to ca. 30 mol/
kg of H;O. Although there are practically no self-
diffusion data for concentrated solutions at high tem-
peratures (above ca. 373 K), it can be expected that the
model will provide reasonable estimates at higher
temperatures because the limiting diffusivities can be
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predicted up to ca. 550 K and the effective ionic
diameters have been found to be independent of tem-
perature.

The primary practical applications of self-diffusion
coefficients are in the area of electrochemical processes
that involve the transport of electroactive species to an
electrode surface through a diffusion layer. As dis-
cussed by Tyrrell and Harris (1984, and references
therein), the diffusivities measured using electrochemi-
cal techniques are primarily intradiffusion coefficients.
However, there are numerous applications that require
the use of mutual diffusivities rather than self-diffusion
(or intradiffusion) coefficients. Therefore, there is a
need to develop a model that would reproduce mutual
diffusivities over the same range of concentrations and
temperatures that were considered here for self-diffu-
sivities. The development of such a model will be the
subject of a forthcoming study.

Literature Cited

Akgerman, A.; Gainer, J. L. Predicting Gas—Liquid Diffusivities.
J. Chem. Eng. Data 1972, 17, 372.

Anderko, A.; Lencka, M. M. Computation of Electrical Conductivity
of Multicomponent Aqueous Systems in Wide Concentration and
Temperature Ranges. Ind. Eng. Chem. Res. 1997, 36, 1932.

Bernard, O.; Kunz, W.; Turqg, P.; Blum, L. Self-Diffusion in
Electrolyte Solutions Using the Mean Spherical Approximation.
J. Phys. Chem. 1992, 96, 398.

Boublik, T. Hard Sphere Equation of State. J. Chem. Phys. 1970,
53, 471.

Chapman, S.; Cowling, T. G. The Mathematical Theory of Non-
Uniform Gases; Cambridge University Press: Cambridge, U.K.,
1952.

Chhih, A.; Turg, P.; Bernard, O.; Barthel, J. M.G.; Blum, L.
Transport Coefficients and Apparent Charges of Concentrated
Electrolyte Solutions—Equations for Practical Use. Ber. Bunsen-
Ges. Phys. Chem. 1994, 98, 1516.

Cullen, E. J.; Davidson, J. F. The Determination of Diffusion
Coefficients for Sparingly Soluble Gases in Liquids. Trans. Inst.
Chem. Eng. (London) 1957, 35, 51.

Czworniak, K. J.; Andersen, H. C.; Pecora, R. Light Scattering
Measurements and Theoretical Interpretation of Mutual Dif-
fusion Coefficients in Binary Liquid Mixtures. Chem. Phys.
1975, 11, 451.

de Blok; W. J.; Fortuin, J. M. H. Method for Determining Diffusion
Coefficients of Slightly Soluble Gases in Liquids. Chem. Eng.
Sci. 1981, 36, 1687.

Debye, P.; Huckel, E. Theory of Electrolytes. I. Lowering of
Freezing Point and Related Phenomena. Phys. Z. 1924, 24, 185.

Dunn, L. A,; Stokes, R. H. The Diffusion of Monocarboxylic Acids
in Agqueous Solution at 25 °C. Aus. J. Chem. 1965, 18, 285.

Dymond, J. H. Hard-sphere Theories of Transport Properties.
Chem. Soc. Rev. 1985, 14, 317.

Ferrell, R. T.; Himmelblau, D. M. Diffusion Coefficients of Nitrogen
and Oxygen in Water. J. Chem. Eng. Data 1967, 12, 111.

Graham, E. E.; Dranoff, J. S. Application of the Stefan—Maxwell
Equations to Diffusion in lon Exchangers. I: Theory. Ind. Eng.
Chem. Fundam. 1982, 21, 360.

Gubbins, K. E.; Bhatia, K. K.; Walker, R. D. Diffusion of Gases in
Electrolytic Solutions. AIChE J. 1966, 12, 548.

Himmelblau, D. M. Diffusion of Dissolved Gases in Liquids. Chem.
Rev. 1964, 64, 527.

Horvath, A. L. Handbook of Aqueous Electrolyte Solutions; Ellis
Horwood: Chichester, U.K., 1985.

Landolt—Bornstein Zahlenwerte und Funktionen aus Physik,
Chemie, Astronomie, Geophysik und Technik. 5 Teil: Trans-
portphanomene I; Springer-Verlag: Weinheim, Germany, 1969.

Marcus, Y. lon Solvation; Wiley: New York, 1985.

Mills, R.; Lobo, V. M. M. Self-Diffusion in Electrolyte Solutions;
Elsevier: Amsterdam, The Netherlands, 1989.

Onsager, L.; Fuoss, R. M. Irreversible Processes in Electrolytes.
Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures
of Strong Electrolytes. J. Phys. Chem. 1932, 36, 2689.

Onsager, L.; Kim, S. K. The Relaxation Effect in Mixed Electro-
lytes. J. Phys. Chem. 1957, 61, 215.



2888 Ind. Eng. Chem. Res., Vol. 37, No. 7, 1998

Pinto, N. deG.; Graham, E. E. Evaluation of Diffusivities in
Electrolyte Solutions Using Stefan—Maxwell Equations. AIChE
J. 1986, 32, 291.

Pitzer, K. S. Electrolytes: From Dilute Solutions to Fused Salts.
J. Am. Chem. Soc. 1980, 102, 2902.

Pitzer, K. S.; Simonson, J. M. Thermodynamics of Multicomponent,
Miscible, lonic Systems: Theory and Equations. J. Phys. Chem.
1986, 90, 3005.

Rafal, M.; Berthold, J. W.; Scrivner, N. C.; Grise, S. L. Models for
Electrolyte Solutions. In Models for Thermodynamic and Phase
Equilibria Calculations; Sandler, S. I, Ed.; Dekker: New York,
1995; Chapter 7, p 601.

Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworth:
London, 1959.

Ruckenstein, E.; Liu, H. Self-Diffusion in Gases and Liquids. Ind.
Eng. Chem. Res. 1997, 36, 3927.

Smolyakov, B. S. Limiting Equivalent Conductivities of lons in
Water Between 25 °C and 200 °C. VINITI 1969, No. 776-69 (also
cited in Horvath, 1985).

Tham, M. K.; Gubbins, K. E. Kinetic Theory of Multicomponent
Dense Fluid Mixtures of Rigid Spheres. J. Chem. Phys. 1971,
55, 268.

Tham, M. K.; Gubbins, K. E. Effect of Salts on the Diffusion of
Dissolved Nonelectrolytes. J. Chem. Soc., Faraday Trans. 1
1972, 68, 1339.

Tham, M. K.; Walker, R. D.; Gubbins, K. E. Diffusion of Oxygen
and Hydrogen in Aqueous Potassium Hydroxide Solutions. J.
Phys. Chem. 1970, 74, 1747.

Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworth:
London, 1984.

Uematsu, M.; Franck, E. U. Static Dielectric Constant of Water
and Steam. J. Phys. Chem. Ref. Data 1980, 9, 1291.

Unsworth, J.; Gillespie, F. C. Diffusion Coefficients of Xenon and
Krypton in Water from 0 °C to 80 °C and in Biological Tissues
at 37 °C. In Diffusion Processes, Proceedings of the Thomas
Graham Memorial Symposium; Gordon and Breach: London,
1969; Vol. 2, p 599.

van Beijeren, H.; Ernst, M. H. The Modified Enskog Equation for
Mixtures. Physica 1973, 70, 225.

Verhallen, P. T. H. M.; Oomen, L. J. P.; v.d. Elden, A. J. J. M;
Kruger, A. J. The Diffusion Coefficients of Helium, Hydrogen,
Oxygen and Nitrogen in Water Determined from the Perme-
ability of a Stagnant Liquid Layer in the Quasi-Steady State.
Chem. Eng. Sci. 1984, 39, 1535.

Watson, J. T. R.; Basu, R. S.; Sengers, J. V. An Improved
Representative Equation for the Dynamic Viscosity of Water
Substance. J. Phys. Chem. Ref. Data 1980, 9, 1255.

Wise, D. L.; Houghton, G. The Diffusion Coefficients of Ten
Slightly Soluble Gases in Water at 10—60 °C. Chem. Eng. Sci.
1966, 21, 999.

Zemaitis, J. F., Jr.; Clark, D. M.; Rafal, M.; Scrivner, N. C.
Handbook of Aqueous Electrolyte Thermodynamics; AIChE:
New York, 1986.

Received for review January 5, 1998
Revised manuscript received April 10, 1998
Accepted April 13, 1998

IE9800010



