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10.1. Introduction

This chapter is devoted to the study of transport properties in aqueous ionic

solutions at elevated temperatures and pressures. The electrical conductivity and

Q1

the diffusion of salts and their ionic components will be analyzed as a function

of temperature and density (pressure) over the entire concentration range, from

infinite dilution to very concentrated solutions.

The viscosity and thermal conductivity of ionic solutions will also be analyzed

in relation to the salt effect as a function of the state variables. Special attention is

paid to predictive models to estimate the values of the transport coefficients over

Q2

a wide range of temperature, pressure and electrolyte concentration.

10.2. Basic Definitions and Phenomenological Equations

The transport coefficients that we will deal in this chapter have been defined in

connection with the phenomenological laws that describe the transport of charge,

mass or momentum in electrolyte solutions. These laws and the main characteristics

of the transport parameters will be summarized briefly.

We assume that the aqueous system contains an electrolyte An2
Cnþ

of molar

concentration c, which dissociates according to

An2
Cnþ

ðaqÞO n2Az2ðaqÞ þ nþCzþðaqÞ ð10:1Þ

yielding ionic concentration ci ¼ anic; where a is the degree of dissociation of the

electrolyte and ni the stoichiometric number. The charges of the anion and cation
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are z2 and zþ, respectively. It is also assumed that the electric neutrality condition

holds, that is,

zþcþ þ z2c2 ¼ zþnþ þ z2n2 ¼ 0: ð10:2Þ

The ions may also associate in solution to form an ion pair, according to the

equilibrium

Az2ðaqÞ þ CzþðaqÞO ACðzþþ z2ÞðaqÞ; ð10:3Þ

with KA being the thermodynamic constant associated with the ion-pair formation

reaction. In symmetric electrolytes ðnþ ¼ n2Þ; such as NaCl or MgSO4, the ion

pairs are neutral species, while in unsymmetrical electrolytes, such as MgCl2, they

bear a net charge.

Some of the transport phenomena, such as diffusion and electrical conductivity,

involve fluxes of solute species (ionic and non-ionic) in the solvent. Therefore, it is

possible to give a general expression for these molecular fluxes in terms of the

concentration and velocity, independent of the driving force that causes the

molecular mobility in the solution.

In a system formed by solute particles (concentration ci) moving with velocity

vi in a solvent which moves with a convective velocity vC, the molar flux Ji (the

number of moles transported per unit area per time relative to fixed coordinates) is

given by

Ji ¼ ciðvi 2 vCÞ: ð10:4Þ

The convective flow is not necessarily due to external forces on the whole system;

it could originate in the local flow of solvent associated with the solute molecules

flowing in solution (Fig. 10.1).

If the solute species are ions bearing charge zi; the total flow of charge is

Jq ¼
X
i¼1

ziFJi ð10:5Þ

where F is the Faraday constant, 96,485 Coulombs/mol and the summation is over

all ionic species. This charge flow is called the current density, i; defined as the

electric charge transported per unit of time and area.

The macroscopic equations which relate the flow of mass (diffusion) and

current density (conductivity) to the driving forces in the system are Fick’s

equation and Ohm’s equation, respectively, shown in Table 10.1. Other transport

properties, such as the flow of momentum (viscosity) and heat (thermal

Fig. 10.1. Molecular flux across an arbitrary plane in a fluid system moving with velocity vC.
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conductivity) involve both the solvent and the solute molecules, so that transport

occurs even in the absence of solute. The relationship between flows and driving

forces for these transport properties is also summarized in Table 10.1.

A general formalism of irreversible transport processes was developed by

Onsager (1931a–c) in terms of fluxes, Ji, which are linearly related to generalized

driving forces, Xj, by

Ji ¼
Xn

j¼1

aijXj ði ¼ 1; 2;…; nÞ ð10:6Þ

where aij are phenomenological coefficients, dependent on the thermodynamic

state variables, which approach zero as ci ! 0: Onsager showed by using the

Principle of Microscopic Reversibility that

aij ¼ aji ði; j ¼ 1; 2;…; nÞ: ð10:7Þ

These are the Onsager Reciprocity Relations (ORR), which allow us to reduce the

number of independent phenomenological coefficients required to describe the

irreversible processes taking place in a system subjected to several driving forces.

10.2.1. Electrical Conductivity

In electrolyte solutions, the charge is transported by ions moving under the

influence of an electric field, E, equal to the gradient of the electrical potential

gradient. The specific conductivity, k, is defined by Ohm’s law (Table 10.1), and it

could be expressed in terms of the resistance R of a parallelepiped of solution of

area A and length l as k ¼ l=AR: That is, k is the conductance (inverse of

resistance) per unit of area and length and its unit is S cm21.

While in solid conductors k is a constant, under constant pressure and tem-

perature, in electrolyte solutions k becomes a parameter depending on the ionic

Table 10.1

Macroscopic equations for the main transport properties

Property Driving force Transport coefficient Relationship

Mass transport Concentration

gradient

Diffusion coefficient (D) Fick J ¼ 2D grad c

Charge transport Potential gradient

or electric field

(E ¼ grad f)

Specific conductivity (k) Ohm Jq ¼ i ¼ k grad f

Momentum

transport

Shear stress Viscosity (h) Poiseuille pxy ¼ 2h grad vx

Heat transport Temperature

gradient

Thermal conductivity (l) Fourier JQ ¼ 2l grad T
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concentration and also on the electric mobility, ui, of these ions in the solution.

The ionic electric mobility is defined as ui ¼ ðvi 2 vRÞ=E; and it depends on

the reference system adopted to measure the ionic velocities. For instance, the

reference velocity could be the average velocity of the solvent molecules, called

Hittorf’s reference system (for a discussion of different reference systems see

Haase, 1990).

For a binary electrolyte solution, the specific conductivity is given by (Haase,

1990)

k ¼ Fðcþlzþluþ þ c2lz2lu2Þ ¼ ðnþlzþllþ þ n2lz2ll2Þac ð10:8Þ

where li ¼ Fui is the ionic conductivity of the i ion.

In order to eliminate the explicit concentration dependence, the equivalent

conductivity, L, is defined in terms of the equivalent concentration, cp ¼

nþlzþlc ¼ n2lz2lc;

L ¼
k

cp
¼ aðlþ þ l2Þ: ð10:9Þ

In the modern literature, following the recommendations of IUPAC, the equivalent

conductivity has been replaced by the molar conductivity ðk=cÞ of the

ð1=nþzþÞAn2
Cnþ

substance (Fernández-Prini and Justice, 1984) which, taking

into account the relationship between cp and c; has the same numerical value as the

old-fashioned equivalent conductivity.

At the infinite dilution limit ðc ! 0Þ; the ion mobility only depends on the ion–

solvent interactions and the ionic and the molar conductivities reach their infinite

dilution values l0
i and L0; respectively. Because the dissociation is complete as the

concentration goes to zero, the molar conductivity at infinite dilution can be

written as

L0 ¼ l0
þ þ l0

2 ð10:10Þ

known as Kohlrausch’s law of independent ion migration. It simply indicates that

at infinite dilution the ionic mobility of a given ion is independent of the type of

salt, that is, of the nature of the counterion.

The generalization of these quantities to a multicomponent system with n

electrolytes is straightforward, but we must be careful with notation because some

electrolytes could have common ions. Thus, a system with n electrolyte

components will have N ionic components, with N # 2n; and the following

expression is valid

L ¼

Pn
k¼1 kkPn
k¼1 ck

¼

PN
i¼1 cilzilliPN

i¼1 ci

ð10:11Þ

where ck are the concentrations of the constituent electrolytes and ci are the ionic

concentrations. It is important to note that, due to the electroneutrality condition, the

total current density and therefore k and L are independent of the reference system.
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In the Onsager formalism, the driving force for the electrical conductivity is the

electric potential gradient, X ¼ 2grad f, and the phenomenological equation for

specific conductivity is

k ¼ F2
X

i

X
k

zizkaik ð10:12Þ

where the sum is over all the ions in solution. The expression for the ionic

conductivity is

li ¼
F2

ci

X
k

aikzk

�����
����� ð10:13Þ

which makes clear the effect of other ions on the mobility of the ion i, indicated by

the cross coefficients aik ði – kÞ:

10.2.2. Transport Numbers

It is clear from Eq. 10.8 that each ion makes its own contribution to the total

current density. The transport or transference number measures the fraction of the

total current transported by a given ion in the solution, and it is defined as

ti ¼
ii
i
¼

lzilciuiX
i
lzilciui

¼
lzilnili

L
: ð10:14Þ

An obvious consequence of the definition is that
P

ti ¼ 1. While the total current is

independent of the reference system, the partial or ionic current is not. The Hittorf

reference system is commonly adopted for the transport numbers.

10.2.3. Diffusion

According to Fick’s law, the flux of electrolyte (2) in a solvent (1) is related to the

electrolyte concentration gradient by

vJ2 ¼ 2D gradðc2Þ ð10:15Þ

where D is the diffusion coefficient of the electrolyte measured in the Fick

reference system, which is the mean volume velocity, v, of the system.

Unavoidably, a gradient of electrolyte concentration generates a gradient of

solvent concentration, leading to a flux of solvent. However, the fluxes of the

solution components are related by
P

i Viv Ji ¼ 0; with Vi being the partial molar

volume of the i component of the solution. Thus, in binary electrolyte solutions,

only the flux of electrolyte is independent, while the flux of solvent in opposite

direction is determined by the solute flux.
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The binary diffusion coefficient of the electrolyte, D, can be expressed in terms

of the diffusion coefficients of the ionic species (Cussler, 1997)

D ¼
lzþlþ lz2l

lz2l=D2 þ lzþl=Dþ

: ð10:16Þ

The diffusion coefficient is concentration-dependent and its value at infinite

dilution is the tracer diffusion coefficient D 0.

For a system of N components the generalized Fick’s law:

vJi ¼ 2
XN
k¼2

Dik gradðckÞ ð10:17Þ

describes the N 2 1 (2,3,…,n) fluxes of the independent components (solvent flow

vJ1 is the dependent flux). The multicomponent diffusion coefficient Dik gives the

flow of solute i produced by the gradient of concentration of solute k. There are

(N 2 1)2 of these coefficients, for instance a ternary system formed by two

electrolytes (2,3) in water (1) has four ternary diffusion coefficients: D22, D23, D32

and D33. The main diffusion coefficients Dii are positive and usually larger than the

cross diffusion coefficients Dik; which could have negative values.

The driving forces for diffusion in the Onsager formalism are not the

concentration gradients, but the chemical potential gradients. Thus, for a

multicomponent system of N species, the fluxes in the Hittorf reference system are

1Ji ¼ 2
XN
j¼2

aijðgrad mjÞp;T ¼ 2
XN
j¼2

XN
l¼2

aij

›mj

›cl

� �
p;T;ck–i

grad cl: ð10:18Þ

The relationship between the diffusion coefficients and the Onsager coefficients,

including the change from the Fick to the Hittorf reference systems is given by

(Haase, 1990)

XN
j¼2

aij

›mj

›cl

¼
XN
k¼2

dik þ
ciVk

c1V1

� �
Dkl ði; l ¼ 2; 3;…;NÞ ð10:19Þ

where dij is the Kronecker delta ðdij ¼ 1 for i ¼ j; dij ¼ 10 for i – jÞ: By resorting

to the ORR it is possible to demonstrate that of the (N 2 1)2 diffusion coefficients,

only NðN 2 1Þ=2 are independent. Thus, for a ternary system formed by two

electrolytes in water, there are three independent diffusion coefficients.

As an alternative to Fick’s law (Eq. 10.17), the fluxes of species can be related

to chemical potential gradients using the Stefan–Maxwell formalism, i.e.,

2xi7mi ¼
RT

C

XN
j¼0

xjJi 2 xiJj

aij

 !
ði ¼ 1;…;NÞ ð10:20Þ

where the subscript 0 denotes the solvent, xi is the mole fraction of the ith

component and C is the total molarity of solutes. The phenomenological

H.R. Corti et al.328

ARTICLE IN PRESS

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258



coefficients aij can be related (Taylor and Krishna, 1993) to the diffusion

coefficients Dij: For some applications, it is advantageous to use the Stefan–

Maxwell formalism rather than Fick’s law because the phenomenological

interaction coefficients aij show a substantially weaker concentration dependence

(Graham and Dranoff, 1982; Pinto and Graham, 1987).

In the case of ionic solutes, the driving force is the gradient of the

electrochemical potential, which includes chemical potential and local electrical

potential gradients. Thus, for a single, completely dissociated, electrolyte the

phenomenological equations are

1Jþ ¼2 aþþðgrad mþ þ zþF grad fÞ

2 aþ2ðgrad m2 þ z2F grad fÞ ð10:21aÞ

1J2 ¼2 a2þðgrad mþ þ zþF grad fÞ

2 a22ðgrad m2 þ z2F grad fÞ ð10:21bÞ

where f is the diffusion potential. This local potential, defined by Eq. 10.21a,b, can

be calculated from these equations by resorting to the zero total current condition

ðzþ1Jþ þ z21J2 ¼ 0Þ: The diffusion potential is due to the different mobilities of

cations and anions moving in the same direction as a consequence of the

concentration gradient; it retards the more rapid small ions and accelerates the

slower large ions making their velocities equal due to the electric neutrality

condition.

The final expression for the diffusion coefficient, obtained by assuming

complete dissociation ðn1J2 ¼ 1Jþ þ 1J2Þ is (Haase, 1990):

D ¼
q2nRT

c2

aþþa22 2 a2
þ2

z2
þaþþ þ 2zþz2aþ2 þ z2

2a22

 !
1 þ m

› ln g^

›m

� �
T ;p

� 	
ð10:22Þ

where m is the molality, g^ the mean activity coefficient of the electrolyte and

q ¼ zþ=n2 ¼ z2=nþ is a constant. The term in brackets represent a thermodyn-

amic factor in the diffusion.

10.2.4. Limiting Laws

In very dilute solutions where the ion–ion interactions can be neglected, the cross

coefficient aþ2 is zero and we obtain the following limiting expressions

l0
i ¼

aiiziF
2

nic2

ð10:23Þ

D0 ¼
RT

F2

1

zþ
þ

1

lz2l

� �
l0
þl

0
2

ðl0
þ þ l0

2Þ

 !
: ð10:24Þ
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The last equation, known as the Nernst–Hartley limiting law, has been used to

calculate tracer diffusion coefficients from measured limiting ionic conductivities.

According to the stochastic approach (Berry et al., 2000), the movement of ions

in dense phases is described by a friction coefficient, z, which is independent of

the driving force (concentration or potential gradient) and is related to the ion

diffusion coefficient ðDi ¼ RT=ziÞ and to the ion mobility ðui ¼ ziF=ziÞ: The

common friction coefficient for both types of transport processes leads to the well-

known Nernst–Einstein relationship between diffusion and mobility of ionic

solutes at infinite dilution:

l0
i ¼

ziF
2

RT
D0

i : ð10:25Þ

10.2.5. Viscosity

In a continuum fluid system, the shear pressure pxy (the force exerted per unit area

to maintain a flow in the direction x with a velocity gradient ›v/›y in the transverse

direction y) is given by Poiseuille’s law (see Table 10.1 and Chapter 1).

The forces responsible for viscous friction in pure water are the interactions

between water molecules. The presence of ions in the system modifies that friction

by introducing solvent–ion and ion–ion interactions, which could increase or

decrease friction, depending on the ion characteristics and concentration.

There is only one transport coefficient describing the viscous flow of an

electrolyte mixture, independent of the number of species in solution, and the

limiting value of this coefficient at zero concentration of electrolyte is the viscosity

of pure water. The change of water viscosity with temperature and pressure has

been discussed in Chapter 1.

As we will see later, this coefficient related to the momentum transport in the

fluid is closely related to the mass and charge transport coefficients.

10.2.6. Thermal Conductivity

The thermal conductivity is the coefficient that quantifies the heat transport

through a system. It is defined by Fourier’s law (see Table 10.1 and Chapter 1). As

with viscosity, the thermal conductivity of an aqueous solution is a single

coefficient, independent of the number of species in solution, and its limiting

value at zero concentration of electrolyte is the thermal conductivity of pure

water.

Unlike the case of viscosity, there is no direct relationship between the thermal

conductivity and the mass and charge transport coefficients, except in complex

processes taking place under non-isothermal conditions that will not be treated in

this work. Nevertheless, water and aqueous electrolyte solutions are extensively

used as coolant fluids in a number of industrial processes and the knowledge of
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the behavior of thermal conductivity with concentration and state parameters is of

major interest.

10.3. Experimental Methods

In this section, the most successful experimental methods and devices used to

measure transport properties in high-temperature and -pressure aqueous solutions

containing ionic solutes are briefly described, as well as the materials employed for

the cells under hydrothermal conditions. The accuracy of the methods, along with

the temperature and pressure range covered by each apparatus, is also analyzed.

10.3.1. High-Temperature Electrical Conductivity Cells

Since the pioneering cell of Noyes (1907), a large number of devices have been

developed for electrical conductivity measurements under high temperature and

pressure conditions; these have been described in detail (Marshall and Frantz,

1987). In this section, we emphasize recent developments that have allowed

improvement of the precision of the measurements.

In most of the cells, conductivity measurements were carried out by linear

extrapolation of the resistances measured at variable frequencies (commonly from

0.5 to 10 kHz) to infinite frequency, as a function of the inverse of the frequency.

The alternative technique, the direct current method, was rarely used.

The design and materials of the conductivity cell must guarantee very small and

predictable changes in the cell constant with temperature. The cell constant, a, is

usually determined by measuring the resistance, R, of KCl aqueous solutions of

known specific conductivity, k, at 298.15 K (Wu and Koch, 1991)

a ¼ kR: ð10:26Þ

To estimate the cell constant at higher temperatures, it is common practice to

correct for the thermal expansion of the materials used in its construction.

Temperature correction factors ranging from 0.1 to 0.4% are reported for different

cells used in the temperature range from 298 to 673 K.

A cell developed by Franck (1956) allowed, for the first time, conductivity

measurements in supercritical water, at temperatures up to 923 K and pressures up

to 250 MPa. This cell design has been used at the Oak Ridge National Laboratory

by Marshall and coworkers (Franck et al., 1962; Quist and Marshall, 1968; Frantz

and Marshall, 1982, 1984), and later by Palmer and coworkers (Ho et al., 1994; Ho

and Palmer, 1996–1998).

The most recent version of the cell (Ho et al., 1994) consists of a platinum–

iridium lined high pressure vessel and a thin coaxial platinum wire, insulated by a

non-porous sintered Al2O3 or Al2O3/ZrO2 tube (for alkaline media). This cell

design is not appropriate for measurements at low concentration (lower than
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0.001 mol·kg21) and low densities. For concentrations ranging from 0.001 to

0.1 mol·kg21 and temperatures and pressures up to 873 K and 300 MPa,

respectively, Ho et al. have reported conductivity measurements of sodium (Ho

et al., 1994; Ho and Palmer, 1996), lithium (Ho and Palmer, 1998) and potassium

(Ho and Palmer, 1997) chlorides and hydroxides, with a precision better than 0.1%.

In order to perform measurements on aqueous solutions near the critical point

of water, a flow-through conductance cell was developed by Wood and coworkers

(Zimmerman et al., 1995; Gruszkiewicz and Wood, 1997; Sharygin et al., 2001).

The cell was constructed from an 80% platinum–20% rhodium cup (outer

electrode), gold soldered to platinum/rhodium tubing used as an inlet tube. On the

rim of the cup is an annealed gold washer on top of a sapphire disc insulator,

through which is connected the inner electrode, a platinum/rhodium tube. The

inner electrode was previously gold-filled at one end, and two small holes on the

other end act as the solution outlet. The solution flow sweeps the contaminants

dissolving from the sapphire insulator out of the measuring zone and eliminates

adsorption effects on the wall of the cell.

A significant improvement in speed and accuracy was achieved by the use of

this flow cell. Zimmerman et al. (1995) reported conductivity measurements with

a precision of about 1% for concentrations as low as 1027 mol·kg21 at a water

density of 300 kg·m23 and 0.1% or better for higher concentrations and water

densities. The upper pressure limit of this cell is, however, only 28 MPa.

Recently, the Oak Ridge static conductivity cell was modified (Ho et al., 2000a,b,

2001) and converted into a flow-through cell able to operate with high accuracy

at densities lower than 0.4 g·cm23. So far, the maximum temperature achieved is

683 K and the maximum pressure is 33 MPa, but it is expected that the cell could

operate up to 873 K and 300 MPa.

The direct-current high temperature flow cell developed by Bianchi et al.

(1993, 1994) does not possess the precision achieved with the AC flow cells, but it

can be preferred for some applications because of its simplicity.

A summary of the aqueous electrolyte systems studied using these modern

conductivity cells is shown in Table 10.2.

10.3.2. Determination of Diffusion Coefficients: Electrochemical Methods

The methods for measuring the diffusion coefficient of an electroactive species

under conditions of high temperature and pressure involve transient chronoampero-

metry, steady-state experiments at microelectrodes, and hydrodynamic methods.

Bard and coworkers (McDonald et al., 1986; Flarsheim et al., 1986) have

pioneered high-temperature and -pressure devices to permit electrochemical

studies in near-critical and supercritical aqueous solutions.

In a very preliminary work (McDonald et al., 1986), a quartz electrochemical

cell contained in a steel vessel was used to study the Cu(II)/Cu(I) system in

sulfate and chloride solutions up to 573 K. This device was later improved
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(Flarsheim et al., 1986) and the quartz cell replaced by a compact alumina flow

cell, which could be heated or cooled quickly and could be recharged with fresh

electrolyte solution with an HPLC pump.

In both designs, the diffusion coefficients were obtained from transient

chronoamperometric experiments. In this approach, the current density (i)–time

(t) response is described by the Cottrell equation (Brett and Brett, 1993):

iðtÞ ¼ nFc
D

pt

� �1=2

ð10:27Þ

where n denotes the number of electrons exchanged per species, c is the molar

concentration of the electroactive species, and the diffusion coefficient D can be

obtained from the slope of a plot of iðtÞ vs. t21=2:
More recently (Liu et al., 1997), the alumina cell was replaced by a titanium

cell internally covered with a film of titanium oxide, and the conventional

electrode by a microelectrode 25 mm in diameter encapsulated in PbO glass. These

modifications allowed the temperature range to be extended to 658 K, and

produced a more precise diffusion coefficient from the steady-state diffusion

limiting current density, ilim, on the plateau region of the sigmoidal shaped wave

given by (Brett and Brett, 1993),

ilim ¼
4nFDc

pr
ð10:28Þ

where r is the radius of the microdisk electrode.

Among the hydrodynamic methods, the wall-tube cell and the channel flow cell

have shown to be suitable alternatives to the rotating disc electrode (RDE), the last

Table 10.2

Aqueous systems and range of experimental conditions of the electrical conductivity measurements

performed using high precision cells

Cell Electrolyte m (mol·kg21) T (K) p (MPa) References

AC-static NaCl 1023–0.1 373–873 300 Ho et al. (1994)

AC-static NaOH 1023–0.01 373–873 300 Ho and Palmer (1996)

AC-static LiCl, LiOH 1023–0.01 373–873 300 Ho and Palmer (1998))

AC-static KCl, KOH 1023–5 £ 1023 373–873 300 Ho and Palmer (1997)

AC-flow NaCl, LiCl,

NaBr, CsBr

<1027–1023 579–677 9.8–28 Zimmerman et al. (1995)

AC-flow LiCl, NaCl,

NaBr, CsBr

4 £ 1028–0.013 603–674 15–28 Gruszkiewicz

and Wood (1997)

AC-flow Na2SO4 1024–0.017 300–574 0.1–28 Sharygin et al. (2001)

AC-flow LiCl, NaCl, KCl 1024–7 £ 1023 298–683 1–32 Ho et al. (2000a)

AC-flow LiOH, NaOH, KOH 1025–1023 323–683 4–32 Ho et al. (2000b)

AC-flow HCl 1025–1023 373–683 9–31 Ho et al. (2001)

DC-flow NaOH <1023 348–423 1.6 Bianchi et al. (1994)
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was rarely employed at high temperature (Wojtowicz and Conway, 1967;

McBreen et al., 1984), because of the presence of moving parts in the cell that

limits its use to moderate temperatures.

The wall-tube cell developed by Trevani et al. (1997) was the first to be applied

to the study of aqueous systems at high temperature and pressure. Constructed

from titanium and having a working platinum microdisk electrode encapsulated in

soda glass as a working electrode, it was used to determine the diffusion

coefficients of iodide in NaHSO4 solutions up to 488 K (Trevani et al., 2000).

The limiting current in the plateau region of steady-state voltammograms was

measured by slowly sweeping back and forth the working electrode potential

across the formal potential while the solution is forced to flow and impact on the

electrode surface. This limiting current density is related to the diffusion

coefficient and the hydrodynamic parameters by (Chin and Tsang, 1978; Trevani

et al., 1997)

ilim ¼ anFD2=3n21=6 H

d

� �b
cpv1=2 ð10:29Þ

where n is the kinematic viscosity, a and b are two hydrodynamic parameters, v is

related to the flow rate, Q, through v ¼ 4Q=pd3; H is the tube–electrode distance,

d is the tube internal diameter, and the other symbols were defined previously.

Recently, Compton and coworkers (Qiu et al., 2000; Moorcroft et al., 2001)

have introduced a high-temperature channel flow cell, in which the working

electrode is heated by eddy currents induced by 8 MHz radio frequency (RF)

radiation. The very fast local heating and the short residence time of the solution in

the high temperature region made it possible to work at temperatures close to the

boiling point of the solvent under normal pressure without phase separation.

Because the cell operates under ‘non-isothermal’ conditions, the diffusion

coefficients can only be obtained by computer analysis of the experimental

results taking into account the mass and heat flow under different conditions.

10.3.3. Diffusion Coefficients: Other Techniques

The Taylor dispersion method (Cussler, 1997) is the most commonly used method

for determining molecular diffusion coefficients due to its versatility and

experimental simplicity. It is based on the measurement of the dispersion of a

sharp pulse of solute injected into a long tube with solvent flowing in laminar flow.

For several reasons, this technique is most suited for diffusion measurement at

infinite dilution and, so far, few attempts of measurements in sub- and supercritical

water have been reported (Goemans et al., 1996).

An optical technique, the laser-induced grating method, was used by Butenhoff

et al. (1996) to determine diffusion coefficients of concentrated solutions of

NaNO3 in supercritical aqueous solutions at temperatures between 673 and 773 K
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and pressures in the range 27–100 MPa. This transient method is particularly

interesting for measuring short-lived radicals in solution or excited species

(Terazima et al., 1995), and it could be used to determine the speed of sound; and

thermal and mass diffusivities of supercritical fluids (Kimura et al., 1995).

The method consists of creating a grating by interference of two heating laser

pulses of the same wavelength. A sinusoidally temperature and concentration

modulated region is created, which in turn generates a spatial modulation of the

refractive index in the sample. A third laser beam with a nonabsorbed wavelength

is used to read (by Bragg diffraction) the relaxation of the grating due to thermal

and mass diffusivity.

The laser-induced grating technique is complementary to the Taylor dispersion

method because it performs optimally at higher solute concentration. It has several

advantages for measuring diffusivities in hydrothermal solutions because it is a

contact-free method which is restricted to a small volume, the temperature and

concentration jumps in the sample are small and natural convection is minimized

due to the short time scale of the experiment (,5 ms).

A summary of different studies of diffusion in aqueous electrolyte systems is

given in Table 10.3.

10.3.4. Viscosity Measurements in Aqueous Solution

The simplest apparatus to measure the viscosity of electrolyte solutions is the

rolling-ball viscometer, consisting of an inner tube, a ball and an optical detector.

The viscometer is immersed in the thermostat and moved up and down to roll the

ball. The viscosity is obtained by measuring the time required to roll the ball

through a tube filled with the sample fluid (Sawamura et al., 1990).

The most precise method for measuring the viscosity of corrosive hydrothermal

fluids is the oscillating-disk viscometer, used by Dudziak and Franck (1966) to

determine the viscosity of pure water up to 833 K and 350 MPa and by Kestin et al.

(1981a,b) for measuring the viscosity of electrolyte solutions.

A new vibrating-wire viscometer has been developed by Padua et al. (1996)

that permits the simultaneous measurement of the density and viscosity of fluids at

high pressure and temperature. Because the principle of operation is similar to that

of the vibrating-tube densimeter, widely used for the measurement of density of

ionic aqueous solutions at hydrothermal conditions, the method seems promising

for viscosity measurements.

10.3.5. Thermal Conductivity Cells for Conducting Liquids

The parallel-plate cell (Abdulagatov and Magomedov, 1994) and the coaxial

cylinder cell (Le Neindre et al., 1973), used to determine the thermal conductivity

of pure water by measuring the power transferred between plates maintained at
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a known gradient temperature, have been used for measurements in high-

temperature aqueous salt environments.

Corrosion problems limit the accuracy of these measurements and more precise

determination of the thermal conductivity of electrolyte solutions can be achieved

with the hot-wire method (Baruël, 1973). In this case a thin platinum wire,

surrounded by the liquid sample, is heated by circulating a known current through

it. The thermal conductivity is calculated from the steady-state temperature

increase of the wire, which is measured by sensing its electrical resistance.

The method was later modified to use a transient current to avoid convective

problems and increase the accuracy. It is known as the transient hot-wire method

and can be used even in acid and salt solutions with an electrically uninsulated

wire (Baruël, 1973). Dietz et al. (1981) modified the method by using alternating

Table 10.3

Aqueous systems and range of experimental conditions of diffusion measurements performed using

electrochemical and optical techniques

Species Supporting

electrolyte

Method and reference T (K) p (MPa)

Cu(II) 0.2 M Na2SO4 Chronoamperometry,

McDonald et al. (1986)

295–518 –

Hydroquinone 0.2 M NaHSO4 Chronoamperometry,

Flarsheim et al. (1986)

298–573 24

Iodide 0.2 M NaHSO4 Chronoamperometry,

Flarsheim et al. (1986)

298–648 24

Iodide 0.2 M NaHSO4 Microelectrode,

Liu et al. (1997)

298–658 15–27

Hydroquinone 0.2 M NaHSO4 Microelectrode,

Liu et al. (1997)

298–658 17.5–27

Fe(II) 0.2 M Na2SO4

(pH ¼ 1.5)

Wall-tube electrode,

Trevani et al. (1997)

306–393 5

Fe(III) 0.2 M Na2SO4

(pH ¼ 1.5)

Wall-tube electrode,

Trevani et al. (1997)

306–393 5

Iodide 0.2 M NaHSO4 Wall-tube electrode,

Trevani et al. (2000)

291–589 5

Fe(CN)6
42 0.1 M KCl RF channel cell,

Moorcroft et al. (2001)

293–348 –

Ru(NH3)6
3þ 0.1 M KCl RF channel cell,

Moorcroft et al. (2001)

293–348 –

Hydroquinone 0.1 M KCl

(pH 1.7 and 6.6)

RF channel cell,

Moorcroft et al. (2001)

293–348 –

Tetramethyl

phenylenediamine

0.1 M KCl RF channel cell,

Moorcroft et al. (2001)

293–348 –

Dimethyl

phenylenediamine

0.1 M KCl RF channel cell,

Moorcroft et al. (2001)

293–348 –

NaNO3 – Laser-induced grating,

Butenhoff et al. (1996)

673–773 27–100
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current in order to avoid polarization problems at the surface of the wire. The

accuracy of the AC method was demonstrated by measuring the thermal

conductivity of water up to 523 K and 350 MPa.

For electrolyte solutions, several authors have used the transient hot-wire

method with a coated wire. Thus, Nagasawa et al. (1983) measured the thermal

conductivity of NaCl up to 40 MPa and 353 K using a platinum wire insulated with a

thin polyester layer. Higher temperatures can be reached by coating the wire, of

tantalum for instance, with a layer of its own oxide (Wakeham and Zalaf, 1987).

10.4. Transport Properties of Pure Sub- and Supercritical Water

In Chapter 1, the change of viscosity, thermal and electrical conductivity and self-

diffusion with temperature and pressure were discussed for pure water. The

presence of ionic solutes generates new diffusion coefficients and also modifies to

some extent the transport properties of water in the solution. This chapter deals

mainly with those transport properties that are a direct consequence of the

presence of ionic solutes, i.e., electrical conductivity and solute diffusion. First, we

present a more detailed analysis of the electrical conductivity and self-diffusion of

pure water.

10.4.1. The Electrical Conductivity of Water

As mentioned in Chapter 1, the electrical conductivity of pure water as a function

of temperature and pressure can be obtained from the known values of Kw, the ion

product in molal scale (IAPWS, 1980; Marshall and Franck, 1981) and the limiting

conductivities of the hydrogen and hydroxide ions

L0
w ¼ cHþl0

Hþ þ cOH2l0
OH2 ¼ K1=2

w rðl0
Hþ þ l0

OH2Þ: ð10:30Þ

Marshall (1987a) described a procedure to estimate L0ðHþ;OH2Þ ¼ l0
Hþ þ l0

OH2 ;
over a wide range of temperature and density, based on Eq. 10.10 ðL0ðHþ;OH2Þ ¼

L0ðHClÞ þ L0ðNaOHÞ2 L0ðNaClÞÞ and the known values of the limiting molar

conductivity of HCl, NaOH and NaCl extrapolated to infinite dilution using the

experimental data by resorting to a reduced-state relationship (Marshall, 1987b):

L0ðsaltÞ ¼ L00 2 Sr ð10:31Þ

whereL00 is the limiting conductivity extrapolated to zero density and S is the slope

of the L vs. density linear plot. Interestingly, the extrapolated limiting conductivity

of the Hþ and OH2 ions to zero density (l00) above 673 K reach the same values as

other salt ions.

Although values of the specific conductivity of liquid and supercritical water

were reported (Marshall, 1987b) up to 1273 K and 1000 MPa, the reduced-state
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approach is based on experimental data at densities above 0.4 g·cm23;

consequently, the predictions below that density are uncertain. Table 10.4

summarizes the predictions up to 673 K and 1000 MPa in the high-density region.

Precise measurements of the electrical conductivity of dilute aqueous NaCl,

NaOH and HCl solutions using AC flow and static cells (Table 10.2) allow

Marshall’s predictions to be tested up to 673 K and 30 MPa. In Fig. 10.2, the

limiting molar conductivity L0ðHþ;OH2Þ predicted by the reduced-state approach

is plotted at several temperatures between 298 and 673 K as a function of density.

As expected, the agreement with experimental data at 373 and 473 K is very

good, but deviations are evident at 573 K even at densities higher than 0.7 g·cm23.

The linear relationship between L0ðHþ;OH2Þ and density does not hold at low

Table 10.4

Specific conductivity (mS·cm21) of sub- and supercritical water

p (MPa) 298 K 373 K 473 K 573 K 673 K

Saturation 0.0550 0.765 2.99 2.41 –

50 0.0686 0.942 4.08 4.87 1.17

100 0.0836 1.13 5.22 7.80 4.91

200 0.117 1.53 7.65 14.1 14.3

400 0.194 2.45 13.1 28.9 39.2

600 0.291 3.51 19.5 46.5 71.3

800 0.416 4.67 26.7 66.9 110

1000 5.92 34.8 90.2 155

Fig. 10.2. Limiting molar conductivity of pure water as a function of density at several temperatures.

Experimental results (Ho et al., 1994, 2001; Ho and Palmer, 1996) 373 K, 0.963 g·cm23 (X); 473 K,

0.873 g·cm23 (X); 573 K, 0.716 g·cm23 (X); 673 K, 0.388 g·cm23 (X); 673 K, 0.301 g·cm23 (V).
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densities, as illustrated by the two points at 673 K shown in Fig. 10.2. Although

the uncertainty of these values is very large, the limiting molar conductivity

clearly decreases at low densities. These results clearly show that the simple

reduced-state approach is unable to describe the electrical conductivity of pure

water in the supercritical low-density region. Later we will analyze this point in

detail.

It is obvious that the presence of ions will increase the electrical conductivity,

but the contribution of Hþ and OH2 ions, that is of the solvent itself, to the total

conductivity can be estimated from Eq. 10.30 by replacing the thermodynamic

ion product constant Kw by the apparent dissociation quotient Qw ¼

Kwaw=ðgHþgOH2Þ; whose value as a function of temperature, pressure and ionic

strength has been reported in the literature (Sweeton et al., 1974; Becker and Bilal,

1985).

10.4.2. Self-Diffusion of Water

The self-diffusion coefficient of sub- and supercritical water was discussed in

Chapter 1. References were given to recommended values of self-diffusion of

liquid water and also to the results by Lamb et al. (1981) for compressed

supercritical water using the NMR spin-echo technique.

It is interesting to note here that the self-diffusion coefficient of supercritical

water was recently determined by Parrinello and coworkers (Boero et al., 2001)

using a first-principles molecular dynamics technique. At 673 K these authors

found that Dw ¼ (46.2 ^ 0.6) £ 1025 cm2·s21 at density 0.73 g·cm23 and

Dw ¼ (103.5 ^ 2.1) £ 1025 cm2·s21 at density 0.32 g·cm23, which agrees rather

well with the values reported by Lamb et al. (1981).

10.5. Temperature and Pressure Dependence of Ion Limiting
Conductivities and Self-Diffusion Coefficients

In a previous section, we analyzed the relation between the friction and the

transport coefficients. The simplest friction model is the hydrodynamic Stokes

model where the viscous friction zv on a spherical object of radius r moving

through a continuum solvent of viscosity h0 is given by

zv ¼ Aprh0: ð10:32Þ

A is a constant that depends on the boundary conditions (four for slip and six for

stick conditions, respectively). By using this expression for friction, it is possible

to obtain expressions for the limiting ionic conductivity:

l0
i ¼

z2eF

Aprh0

ð10:33Þ
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known as the Nernst–Einstein (NE) equation, and for the limiting diffusion

coefficient

D0
i ¼

kT

Aprh0

ð10:34Þ

known as the Stokes–Einstein equation (SE).

According to Eq. 10.33, a plot of the Walden product, l0
i h0 vs. r21 should yield

a straight line for all ions in a given solvent such as water. However, the

experimental data show that for the smaller ions the Walden product is lower than

that predicted by the NE equation when the crystallographic radii are used for the

ions. For this reason, a number of models that account for the interaction of the ion

with the dipolar environment have been developed.

10.5.1. Continuum and Molecular Models

In continuum models, the solvent is considered as a medium whose molecular

nature is not important, and the friction on the ion is enhanced as its motion

disturbs the solvent’s equilibrium polarization. The excess of friction of an ion

over that predicted by the Stokes–Einstein relation is ascribed to this effect, called

dielectric friction. The theory of Zwanzig (1970) leads to the following result for

the dielectric friction:

zD ¼ C
ðzeÞ2ð10 2 11ÞtD

10ð210 þ 1Þr3
ð10:35Þ

where C ¼ 3=4 for slip and C ¼ 3=8 for stick conditions, 10 and 11 are the static

and infinite-frequency dielectric constant of the solvent, respectively, and tD is the

Debye dielectric relaxation time.

Hubbard and Onsager (1977) developed the most complete continuum theory

for ionic friction by solving the Navier–Stokes hydrodynamic equations. In their

model, the dielectric friction does not become infinite when the ionic radius tends

to zero as predicted by Zwanzig, but it reaches a constant value that depends on

the viscosity and dielectric parameters of the solvent. The simplest version of the

Hubbard–Onsager theory was formulated by Wolynes (1980) starting with the

following expression for the total friction of a moving ion of radius R in a

continuum fluid having a distance-dependent viscosity:

1

z
¼
ð1

R

dr

4pr2hðrÞ
ð10:36Þ

where the viscosity is given by:

hðrÞ ¼ h0 1 þ
e2ð10 2 11ÞtD

16ph01
2
0r4

 !
: ð10:37Þ
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Xiao and Wood (2000) improved the agreement of the dielectric friction theory

with experiment by utilizing a compressible continuum (CC) model (Wood et al.,

1994), which describes the change in the solvent density and viscosity as a

function of the distance from the ion. In the CC model, the viscosity hðrÞ in Eq.

10.36 is given by a term that accounts for the electrostriction (density

enhancement due to electric field) and an electroviscous effect (viscosity

enhancement by the electric field). With one adjustable parameter, the radius

Rw of the water molecule, this model quantitatively represents limiting

conductivities for high densities, but deviates from experimental data for densities

below ca. 0.5 g·cm23. The model predicts the decrease of Walden product with

solvent density and the linear relationship between L 0 and density at

r . 0.5 g·cm23, but it fails to predict the large temperature dependence of L 0

at r , 0.5 g·cm23, as shown for NaCl in Fig. 10.3a.

Fig. 10.3b shows the predictions of the continuum models for the Walden

product as a function of the ion radius. If tD in the Zwanzig and Hubbard–

Onsager theories is calculated with the Debye–Einstein–Stokes equation, it is

possible to fit the experimental data at a single temperature by adjusting Rw.

Thus, the best fit for the CC model is for Rw ¼ 0.166 nm, while a value of

0.22 nm is needed to fit the data with the Hubbard–Onsager theory. In

general, this theory underestimates the dielectric friction of small ions, leading

to high limiting conductivities for reasonable values of Rw.

The effect of pressure on the dielectric friction has been studied

experimentally by Nakahara et al. (1982) at 298 K. The Hubbard–Onsager

Fig. 10.3. (a) Limiting molar conductivity of NaCl as a function of density at several temperatures

from 413 to 673 K: CC model with Rw ¼ 0.14 nm (X), and Rw ¼ 0.166 nm (X); experimental data:

(L) Zimmerman et al., 1995; (X) Gruszkiewicz and Wood, 1997. (b) Walden product for several

ions at 656 K and 28 MPa (r ¼ 0.493 g·cm23): dotted line, Stokes’ law; dashed line, Hubbard–

Onsager theory; dot-dashed line, Zwanzig theory; solid line, CC model (Rw ¼ 0.166 nm) (Xiao and

Wood, 2000).
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theory predicts a decrease of the dielectric friction with pressure, but the

experimental results up to 200 MPa show that this is true for the small Liþ

ion, while the larger ions, such as Kþ and Csþ, show a small increase of the

dielectric friction with pressure.

A more elaborate semicontinuum model (Balbuena et al., 1998) used molecular

dynamics simulation to determine the water rotational reorientation times in the

first coordination shell, which is incorporated into the hydrodynamic Eq. 10.36 for

the ionic friction coefficient. Despite this potential improvement in the calculation

of the local viscosity around the ions, the model predicts that the limiting

conductivity increases approximately linearly with decreasing solvent density, in

disagreement with the more recent experimental studies which suggest a decrease

in the ionic mobility at low densities.

It is clear that the limitations of the continuum models in explaining the limiting

transport properties of ions in water are due to the lack of a molecular description

of the ion–water interactions and dynamics. Bagchi and Biswas (1998) have

recently shown how a microscopic approach to the friction problem could explain

the deviations of ionic mobilities from the Walden product. This molecular model

shows how the fast solvation dynamics (in the range of femtoseconds) contribute

60–80% to the total energy relaxation and therefore control the slow mobility of

ions in the solvent at high density.

Fig. 10.4 shows the remarkable agreement with experimental data at 298 K

obtained with the Bagchi and Biswas model using the available information

on the longitudinal components of the ion–dipole correlation functions and

Fig. 10.4. Limiting conductivities of univalent ions in water at 298 K calculated with the Bagchi–

Biswas model (Bagchi and Biswas, 1998).
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the orientational dynamic structure factor of the pure solvent along with the self-

dynamic structure factor of the ion (Biswas and Bagchi, 1998).

Unfortunately, the calculation of the friction at higher temperatures using the

molecular model is complex. It requires information on the solvent dynamics and

the dynamic structure factor of the ion, which are not available. However, the

combination of this molecular model with information obtained from molecular

simulation of the ion solvation dynamics (Re and Ları́a, 1997; Biswas and Bagchi,

1998) could contribute to the development of microscopic models of ionic

transport in hydrothermal and supercritical systems.

10.5.2. Empirical Approaches to the Calculation of the Limiting Ion
Conductivity

Due to the lack of a precise model for the limiting transport coefficients of ions in

water, we will adopt empirical approaches to estimate them as a function of

temperature and pressure.

The first attempt to assign limiting conductances for single ions at temperatures

up to 673 K was due to Quist and Marshall (1965), who extrapolated transport

numbers of KCl and NaCl measured (Smith and Dismukes, 1964) at temperatures

up to 398 K. They assumed that the linear relationship between log10(t2/tþ) and

T 21 observed at moderate temperatures is valid over all the temperature range.

A temperature-dependent Walden product was proposed by Smolyakov and

Veselova (1975) to predict the ion limiting conductances at temperatures to 473 K:

log10ðl
0h0Þ ¼ A þ B=T ð10:38Þ

and the values of the parameters A and B were tabulated for several ions.

Marshall (1987b) proposed a reduced-state relationship, Eq. 10.31, to describe

the density and temperature dependence of the limiting electrical conductances of

salts in aqueous solutions up to 1073 K and 400 MPa. In Eq. 10.31, L00 is the

limiting conductivity extrapolated to zero density and S is the slope of the L vs.

density linear plot. Marshall (1987a) noted that, at all temperatures, these linear

plots intersect the density axis at a common value rh. Thus, the slopes can be

calculated as S ¼ 2L00=rh: By assuming that the zero-density transport numbers

of Naþ and Cl2 are equal over all the temperature range (that is, l00ðNaþÞ ¼

l00ðCl2Þ ¼ 0:5L00ðNaClÞÞ; he reported the parameters l00 and rh for several ions

up to 673 K.

Other approaches for limiting ion conductivities are based on transport–

entropy correlations. Oelkers and Helgeson (1988) described the limiting ionic

conductivity or self-diffusion coefficients of ions by an Arrhenius equation of the

form

l0 ¼ Al exp 2
El

RT

� �
: ð10:39Þ
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Based on a correlation between the ionic conductivity and the standard partial

molar entropy of the ions, S0
i ; valid to at least 573 K and saturation pressure:

l0
i ¼ ai þ biS

0
i ð10:40Þ

they derived expressions for l 0 and D 0 of 30 ions at temperatures up to 1273 K

and pressures up to 500 MPa. The empirical equations have several adjustable

parameters, which account for the temperature and pressure dependence of the

activation energy and the coefficients in Eq. 10.40. Therefore, the predictive value

of this approach relies on the accuracy of the experimental values of the limiting

electrical conductivities reported until the end of the 1980s.

Anderko and Lencka (1997) used Eq. 10.38 with a B coefficient estimated by:

B

lzl
¼ a þ bDS0

str þ cðDS0
strÞ

2 ð10:41Þ

where DS0
str is the structural entropy of the ion at 298 K, calculated as the

difference between the hydration entropy and the Born contribution; also, a

constant nonstructural, nonelectrostatic contribution of 280 J·mol21·K21 is

subtracted from the hydration entropy to obtain the structural component. The

correlation expressed by Eq. 10.41 depends on the type of ion–solvent interactions

in such a way that the parameters a, b and c have common values for all structure-

breaking ions (DSstr
0 . 2100 J·mol21·K21) and for hydrophobic structure-making

ions (DSstr
0 , 2100 J·mol21·K21). For strongly electrostrictive structure-making

ions (i.e., those that strongly attract water molecules because of their charge and

small radius), B ¼ 0:
To illustrate the behavior of these models, Fig. 10.5 compares the limiting

conductivities of NaCl obtained from the Oelkers and Helgeson (1988), Marshall

(1987b) and Smolyakov and Veselova (1975) models with experimental data

along the saturation line and outside the saturation region. Outside the saturation

region, the recent data of Ho et al. (1994, 2000a) and Gruszkiewicz and Wood

(1997) were used. It should be noted that these data were not used for regressing

the parameters of these models and, therefore, they provide a stringent test of the

models. As shown in Fig. 10.5, all three models correctly reproduce the limiting

conductivities along the saturation line. The Smolyakov–Veselova model is not

appropriate for computing the conductivities away from the saturation line

because it does not include any density dependence. The main advantage of this

model is its suitability for predicting the temperature dependence of the limiting

conductivity along the saturation line using only one experimental point at room

temperature and a correlation with the structural entropy (Eq. 10.41). The

Marshall and Oelkers–Helgeson models include the density effects either directly

(Marshall, 1987b) or through pressure (Oelkers and Helgeson, 1988). For densities

above ca. 0.5 g·cm23, both these models reproduce the new experimental data

with reasonable accuracy. However, a significant disagreement with the data is

observed for lower densities, mainly in the supercritical region. Here, the Marshall
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(1987b) and Oelkers and Helgeson (1988) models show substantially different

behavior. At low densities, the data of Ho et al. (1994) are in better, although only

qualitative, agreement with the model of Marshall (1987b). At the lowest density

for which data are available (0.25 g·cm23), the data of Gruszkiewicz and Wood

(1997) seem to agree better, but only qualitatively, with the Oelkers and Helgeson

(1988) model.

At this point, it is clear that one should decide between two clearly different

behaviors of the limiting conductivity of ions in the low-density region

(r , 0.5 g·cm23). One is a linear increase of L 0 with decreasing solvent density,

as suggested by the experimental data from the ORNL group (Ho et al., 1994; Ho

and Palmer, 1997, 1998) and one semiempirical model (Marshall, 1987b) and the

second is that L 0 reaches a plateau or even goes through a maximum and then

decreases as the solvent density decreases, as can be concluded from the precise

measurements on very dilute solutions by Wood and coworkers (Zimmerman

et al., 1995; Gruszkiewicz and Wood, 1997).

This dilemma was resolved by the results of molecular simulations and by the

very comprehensive analysis by Nakahara and co-workers (Ibuki et al., 2000) of

the available data for the limiting conductivity of alkali chlorides in supercritical

Fig. 10.5. Calculated and experimental limiting conductivities of NaCl as a function of temperature

and density. Experimental data from: Smolyakov, 1969 (V) and Quist and Marshall, 1965 (X) at

saturation; Ho et al., 1994, (W) 1 g·cm23, (W) 0.9 g·cm23, (S) 0.8 g·cm23, (K) 0.6 g·cm23, (X)

0.45 g·cm23, (W) 0.3 g·cm23; Gruszkiewicz and Wood, 1997 (X), 0.6 g·cm23, (X) 0.25 g·cm23. The

lines show the results calculated using the models of Marshall (1987b), dashed lines; Oelkers and

Helgeson (1988), solid lines; and Smolyakov and Veselova (1975), dotted line. The isochors

calculated from the models of Marshall (1987b) and Oelkers and Helgeson (1988) are marked with

the corresponding values of density.
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water. They concluded that the behavior of L 0 is similar for all the salts, and that

the ionic mobility reaches a plateau or decreases with decreasing solvent density,

as experimentally shown by Wood and co-workers (Zimmerman et al., 1995;

Gruszkiewicz and Wood, 1997). The apparent linear increase of L 0 with

decreasing solvent density reported by the ORNL group was the result of fitting the

conductivity data outside the concentration range where the conductivity

equations are valid. By limiting the data analysis to concentrations within the

correct range, they obtained extrapolated L 0 values having the same density

dependence reported by Wood and coworkers, even when very low concentrations

were not used in the conductivity measurements.

The CC model by Xiao and Wood (2000) also predicts a decreasing limiting

conductivity with decreasing solvent density for NaCl down to 0.2 g·cm23,

although the calculated values are 30% higher than the experimental ones.

10.5.3. Molecular Dynamics Simulation of the Limiting
Transport Properties

The experimental difficulties of determining transport coefficients in aqueous

solutions in the high temperature and supercritical region have encouraged the use

of molecular simulation techniques.

Most simulations in aqueous systems use discrete simple point charge models

(SPC and SPC/E) for the solvent (Berendsen et al., 1987). The diffusion coefficient

of each ion is calculated from the mean-square displacement or from the velocity

autocorrelation function (Hansen and McDonald, 1976). The limiting ionic

conductivity is calculated from the diffusion coefficient at infinite dilution using

the Nernst–Einstein equation (Eq. 10.25).

The number of water molecules used in the simulation limits the concentration

of salt of the simulated system. Thus, simulations with one cation and one anion in

215 water molecules are often considered infinite dilution.

Simulation of the diffusion coefficients and limiting conductivity of NaCl (Lee

et al., 1998) and LiCl, NaBr, CsBr (Lee and Cummings, 2000) in supercritical

water at 673 K and densities between 0.22 and 0.74 g·cm23 have been

performed. The results show a clear change of slope from the linear dependence

of limiting conductivity proposed by Marshall (Eq. 10.31) at densities below

0.5 g·cm23, as found experimentally by Zimmerman et al. (1995). For these

salts, a maximum or a plateau is observed at densities close to 0.3 g·cm23, as

shown in Fig. 10.6, in good agreement with the experimental results. The poor

agreement in the case of LiCl is probably due to an underestimation of the

mobility of the Liþ ion, which exhibits a linear dependence of limiting

conductivity on the water density.

It is concluded that the number of hydration water molecules around ions

dominates the behavior of the limiting conductivity in the high-density region,
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while the magnitude of the ion–water interaction, measured by the potential

energy per hydration water molecule, dominates in the low-density region.

Koneshan and Rasaiah (2000) performed molecular dynamics simulations of

the diffusion of NaCl at 683 K and solvent densities 0.35 and 0.175 g·cm23 at

infinite dilution (1 Naþ and 1 Cl2 ion in 215 water molecules), 0.5 molal (10 Naþ

and 10 Cl2 ions in 1110 water molecules) and 1 molal (10 Naþ and 10 Cl2 ions in

555 water molecules). The diffusion coefficients at infinite dilution do not agree

with those reported by Lee et al. (1998), and increase monotonically with

decreasing solvent density, but the simulation gives insight into the structure of the

solution, revealing that in the concentrated solutions the ion pairing is significant.

Thus, small clusters containing Naþ and Cl2 ions are observed at 0.5 molal while

in the 1 molal solution the presence of a single cluster of 10 Naþ and 10 Cl2 ions is

observed. The diffusion coefficient of the ions in the 1 molal solution is half its

value at infinite dilution and the values for the cation and anion are nearly equal to

each other.

A recent molecular simulation of the diffusion of NaCl in supercritical water at

673 K (Hyun et al., 2001) reaches densities as low as 0.1 g·cm23, exploring a

region not accessible experimentally. The limiting conductivities are around 20%

less than the experimental values (Fig. 10.6), but they have the same behavior,

showing a plateau at densities between 0.3 and 0.5 g·cm23. Interestingly, the

limiting conductivity seems to increase at densities lower than 0.2 g·cm23, which

Fig. 10.6. Limiting conductivities of several electrolytes at 673 K as a function of water density.

Molecular dynamics simulation (Lee et al., 1998; Lee and Cummings, 2000): (X) NaCl; (K) NaBr;

(L) CsBr; (X) LiCl; (S) NaCl, molecular dynamics simulation (Hyun et al., 2001). Experimental

results for NaCl (X) at 656–677 K (Zimmerman et al., 1995).
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is attributed to entropic desolvation of the first hydration shell with an increase of

the solvent residence times. This view of an increasingly rigid but smaller

hydration shell with decreasing solvent density is also supported by the CC model

of Xiao and Wood (2000), leading to an increase in the limiting conductivity. This

prediction of the models and molecular simulations has not been yet verified

experimentally and it is one of the future challenges in this field.

10.5.4. The Limiting Transport Properties of Complex and Large Ions

In most practical applications, complex species such as metal–halide or metal–

hydroxide complexes play an important role. At the same time, very little

experimental information is available about the limiting conductivities of

complexes. An estimation of the limiting ionic conductivities of ions formed by

association of ions of unsymmetrical electrolytes, such as CaClþ or NaSO4
2, can

be obtained from Eq. 10.33; by assuming (Anderko and Lencka, 1997) that the

volume of the complex ions is equal to the sum of the volume of the n constituent

simple ions:

zcomplex

l0
complex

¼
Xn

i¼1

zi

l0
i

 !3" #1=3

ð10:42Þ

The precision of the electrical conductivity measurements of unsymmetrical

electrolytes at high temperatures is not enough to allow validation of this

approximation, but it seems to be fairly good (Anderko and Lencka, 1997) for

predicting ionic conductivities of complex ions at room temperature.

In addition to the limiting conductivity and diffusivity of ions, it is often of

interest to compute the limiting diffusivity of neutral molecules. Here, the

diffusivities of species such as oxygen, hydrogen and water are of particular

importance. Anderko and Lencka (1998) developed a correlation for computing

the diffusivity of neutral molecules as a function of temperature. The mathematical

form of this correlation is similar to the Smolyakov–Veselova expression for

limiting conductivity (Eq. 10.38).

There is a lack of information on the conductivity of large ions, such as

tetraakylammonium cations, and tetraphenylarsonium or PF6
2 anions, in high-

temperature aqueous solutions. Because the dielectric friction, given by Zwanzig’s

theory (Eq. 10.35) or the HO theory (Eqs. 10.36 and 10.37), is predicted to

decrease with the increasing ion size, it is expected that the simple hydrodynamic

model expressed by Eqs. 10.33 and 10.34 could yield reliable values of the

limiting transport coefficients when the radius of the ion is much larger than the

radius of the water molecule.

In the case of ions of intermediate size, the limiting conductivity could be

estimated from Eqs. 10.35–10.37 using the Debye relaxation times of water

measured by Okada et al. (1997, 1999) at temperatures and pressures up to 1018 K
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and 120 MPa. The Debye relaxation time, tD, decreases with solvent density until

it reaches a plateau at densities between the critical density and 0.6 g·cm23.

Surprisingly, the experimental value increases with decreasing water density at

densities below the critical density. This behavior, which could be used to explain

the decreasing limiting conductivity of ions at low densities, could not be

reproduced by molecular dynamics simulations (Skaf and Ları́a, 2000) that

yielded very good agreement with experimental data at r . 0.4 g·cm23.

10.6. Concentration Dependence of the Transport Coefficients

One of the most important tasks for a full description of the transport properties of

ionic solutes in aqueous systems at high temperatures and pressures is the

prediction of the effect of the concentration. In this section, we will present some

of the theoretical and empirical models used to describe transport coefficients as a

function of ion concentration, with special emphasis on the treatment of the ion

association effect on these coefficients.

10.6.1. Theories of Conductivity of Electrolyte Solutions

The effect of the concentration on the conductance of an electrolyte in very dilute

solutions is simple. It was represented empirically by Kohlrausch and later

deduced theoretically by Onsager (1927):

L ¼ L0 2 Sc1=2 ð10:43Þ

where S is the limiting-law slope, which in the case of symmetrical electrolytes

can be expressed as S ¼ aL0 þ b; where a and b are given by:

a ¼
82:046 £ 104z2

ð1TÞ3=2
ð10:44aÞ

b ¼
8:2487z

hð1TÞ1=2
ð10:44bÞ

with the units of S being S cm2·mol23/2·dm3/2 (the molar concentration is usually

expressed as mol·dm23) and the water viscosity, h, expressed in Pa·s.

In order to illustrate the change of the limiting slope with temperature and

pressure in aqueous solutions, Fig. 10.7 compares the calculated Onsager’s

limiting slope S of aqueous NaCl in different thermodynamic states.

Eq. 10.43 is a limiting law, obtained when the first-order approximation is used

and the electrophoretic and relaxational correction terms are separable. Positive

deviations from this behavior are expected in non-associated electrolytes due to
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neglected short-range interactions, which make a higher order contribution to

conductivity.

There are two strategies for including these higher order contributions in the

conductance equation due to Fuoss and Onsager (1957) and Pitts (1953), which

have been analyzed in detail in the literature (Fernández-Prini, 1973). Thus, at the

end of the 1970s there were several alternative equations to account for the effect

of concentration on electrolyte conductances: the Pitts (1953) equation (P), the

Fuoss and Hsia (1967) equation (FH) later modified by Fernández-Prini (1969)

(FHFP) and valid only for dilute, binary, symmetrical electrolytes, and the Lee and

Wheaton (1978) equation (LW) valid for unsymmetrical electrolytes.

The FHFP equation has been widely used to describe the conductance of

electrolyte in water and other solvents.

L ¼ L0 2 SI1=2 þ EI ln I þ J1I 2 J2I3=2 ð10:45Þ

where I is the ionic strength, defined by I ¼ 1=2Szici: The coefficients S and E

depend only on the charge type of the electrolyte, on the mobility of the ions, on

the temperature and on the solvent properties (dielectric constant and viscosity).

The J1 and J2 coefficients depend also on the minimum distance of approach of

free ions, d, (whose meaning is similar to the critical Bjerrum distance although is

Fig. 10.7. Molar conductivities of NaCl solutions as a function of concentration at different

thermodynamic states (Zimmerman et al., 1995; Gruszkiewicz and Wood, 1997). The corresponding

limiting Onsager slopes are plotted at each ðT ; pÞ : (XXX, X) T ¼ 579.4 K, p ¼ 9.8 MPa; (XXX, X)

T ¼ 603.34 K, p ¼ 15.17 MPa; (XXXXX, X) T ¼ 652.8 K, p ¼ 24.81 MPa; (XXXXXXXXX, X)

T ¼ 673.1 K, p ¼ 28.00 MPa.
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not fixed, but is an adjustable parameter). The expressions for J1 and J2 depend on

the level of approximations used in their derivation (Fernández-Prini, 1973;

Justice, 1983). In Table 10.5, we summarize the expressions for the coefficients in

Eq. 10.45 for the case of symmetric electrolytes. The expressions for asymmetric

electrolytes can be found in the literature (Fernández-Prini and Justice, 1984; Lee

and Wheaton, 1978). In Table 10.5, bd ¼ lzþz2le2=ð1kTÞ; so that d is equal to the

Bjerrum distance for b ¼ 2.

The LW equation cannot be expanded in the form of Eq. 10.45 because it

contains more complicated functions of I. Like the FHFP equation, it includes a

logarithmic term with the same E coefficient, and it depends on the ionic

conductivities at infinite dilution and the distance of closest approach, d, of free

ions.

More recently, Turq et al. (1995) derived a conductivity equation (TBBK)

based on the mean spherical approximation (MSA); this can also be applied to

unsymmetrical electrolytes. This equation, derived using the Fuoss–Onsager

approach, does not contain the logarithmic term when expanded as a function of I.

Another difference of the TBBK equation from the classical equations is that it

uses as parameters the ionic diameters instead of the distance of closest approach.

A careful comparison of the classical and new theories has been performed

recently by Fernández-Prini and coworkers (Bianchi et al., 2000) at

298.15 K. They concluded that, for symmetrical electrolytes in dilute solutions

(kDa , 0.1, where kD ¼ ð8pe2NA=1kTÞ1=2I1=2 is the inverse Debye length) the

FHFP equation is superior to the TBBK equation. The TBBK equation is claimed

to be precise even at high concentrations, but the deviations from the experimental

data are systematic.

A similar comparison by Wood and coworkers (Sharygin et al., 2001) for

aqueous NaCl at 623.9 K and 19.79 MPa (r ¼ 0.596 g·cm23) indicates that the

Table 10.5

Expressions for the coefficients of the conductivity Eq. 10.45

Coefficient Term (symmetric electrolyte)

E ¼ E1L
0 2 E2

E1 2.9425 £ 1012 z 4/(1T)3

E2 4.3324 £ 106 z 3/h(1T)3

J1I ¼ 2E1{D1 þ ln(kd/
p

I)}L 0 þ 2E2{D2 2 2ln(kd/
p

I)}

D1 (2b 2 þ 2b 2 1)/b 3 2 0.90735 (D1 ¼ 2.2824 for b ¼ 2)

D2 22/3b þ 0.01420 (D2 ¼ 3.6808 for b ¼ 2)

J2I 3/2 ¼ 4kbdE1D3L
0 þ 2kbdE2D4 2 8.2487zD5E2/(L 0h(1T)1/2)

D3 0.9571/b 3 þ 1.1187/b 2 þ 0.1523/b (D3 ¼ 0.45546 for b ¼ 2)

D4 (0.5738b 2 þ 7.0572b 2 2/3)/b 3 2 0.6461 (D4 ¼ 1.3218 for b ¼ 2)

D 4/3b 2 2.2194 (D5 ¼ 1.5527 for b ¼ 2)
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FHFP equation yields better results than the TBBK equation. Under these

conditions, the ion association could not be neglected, even in NaCl, and the

conductivity equation includes an ion association term. Thus, the FHFP equation

for an associated electrolyte was used:

L ¼ L0 2 SI1=2 þ EI ln I þ J1I 2 J2I3=2 2 KALg
2
^ac ð10:46Þ

where the coefficients depend on the distance of closest approach, fixed at the

Bjerrum distance, d. The NaCl conductivity data were fitted (Sharygin et al., 2001)

with the FHFP equation using two (L 0 and KA) or three (L 0, KA and J2)

parameters and the standard deviations were better than those obtained with the

TBBK equation. When three parameters were used in the fit, the results became

independent of the activity coefficient model used (Bjerrum or MSA).

It is worth noting that at 652.6 K and 22.75 MPa (r ¼ 0.2 g·cm23) the

performance of both conductivity equations is similar independent of the activity

coefficient model. This could be attributed to the poorer accuracy of the

experimental data in the low-density region.

The precision of the experimental data is a key issue in choosing an equation to

fit the data. Table 10.6 summarizes the values of L 0 and KA obtained by fitting the

experimental measurements of the electrical conductivity of aqueous NaCl at

temperatures up to 723 K.

The situation for asymmetric electrolytes is more complex, since incon-

sistencies were observed at 298 K between the association constant obtained from

conductivity data and from activity coefficients (Bianchi et al., 2000).

As mentioned previously, the revision by Ibuki et al. (2000) of the conductivity

data in supercritical water has clarified the general trends of the temperature and

density dependence of the limiting conductivities of simple electrolytes. A careful

study of the conductivity equations leads to the conclusion that the two-parameter

(L 0 and KA) fitting method (FHFP2) provides more reliable results than three-

parameter methods (FHFP3) in a moderate concentration range. It was also

observed that the FHFP equation 10.46, or the more simple Shedlovsky equation

(Harned and Owen, 1950), gives similar fitting results, as shown in Table 10.6 for

LiCl solutions at 658 K and r ¼ 0.251 g·cm23.

The contribution of the electrophoretic effect to the concentration dependence

of the molar conductivity is expected to be lower in supercritical water than in

ambient water because of the much smaller viscosity and dielectric constant. Thus,

the ratio b/aL 0 in Eq. 10.44 decreases from 2.29 at 298 K and 1.0 g·cm23 to 0.62

at 758 K and 0.25 g·cm23. This is why differences among several conductivity

equations vanish at supercritical conditions.

On the other hand, Ibuki et al. (2000) have demonstrated that the higher order

terms in Eq. 10.46 or similar ones nearly cancel each other at moderate

concentration in supercritical water, as can be seen in Table 10.7. This could be the

reason for the success of simpler conductivity equations under these conditions.
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Table 10.6

Limiting conductivity and association constant of aqueous NaCl and LiCl from conductivity data

c (mol·dm23) T (K) r (g·cm23) Fitting equation L 0 (S·cm2·mol21) log10 KA References

NaCl

(7–700) £ 1024 623.15 0.70 Shedlovsky 1045 No association Quist and Marshall (1968)

623.15 0.80 945

(6–800) £ 1024 623.15 0.65 Shedlovsky 1113 ^ 23 1.083 Ho et al. (1994)

623.15 0.80 942 ^ 20 0.633

(3–1300) £ 1025 579.47 0.700 FHFP 1043 ^ 1 0.95 ^ 0.05 Zimmerman et al. (1995)

601.73 0.692 1052 ^ 2 1.05 ^ 0.07

604.57 0.671 1068 ^ 1 1.13 ^ 0.04

(1–1180) £ 1025 603.28 0.650 FHFP 1121 ^ 1 1.22 ^ 0.03 Gruszkiewicz and Wood (1997)

616.23 0.650 1132 ^ 1 1.25 ^ 0.03

620.43 0.600 1185 ^ 1 1.46 ^ 0.02

(1.5–66) £ 1024 623.9 0.596 FHFP 1191 ^ 2 1.49 ^ 0.03 Sharygin et al. (2001)

623.9 0.596 TBBK 1184 ^ 10 1.37 ^ 0.07

652.6 0.200 FHFP 1106 ^ 30 5.03 ^ 0.08

652.6 0.200 TBBK 1106 ^ 30 5.03 ^ 0.08

LiCl

(5–244) £ 1027 658.07 0.251 FHFP3 1208 ^ 9 4.15 ^ 0.02 Gruszkiewicz and Wood (1997)

(5–244) £ 1027 658.07 0.251 Shedlovsky 1203 ^ 11 4.13 ^ 0.02 Ibuki et al. (2000)

658.07 0.251 FHFP2 1206 ^ 8 4.14 ^ 0.02

(1–10) £ 1023 773.15 0.550 Shedlovsky 1219 ^ 62 2.06 ^ 0.16 Ibuki et al. (2000)

773.15 0.550 FHFP2 1237 ^ 64 2.15 ^ 0.19

(3–30) £ 1024 773.15 0.300 Shedlovsky 826 ^ 84 3.02 ^ 0.18 Ibuki et al. (2000)

773.15 0.300 FHFP2 873 ^ 116 3.17 ^ 0.20

KA in molal standard scale.
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Table 10.7

Contribution of the individual terms (in S·cm2·mol21) for a modified version by Justice (1983) of Eq. 10.47 for LiCl (Ibuki et al., 2000)

Conditions c (mol·dm23) L 0
2SðacÞ1=2 Eac log10(ac) J1ac 2J2(ac)3/2 2Lacg^

2 KA

298 K, 1.00 g·cm23 0.030 115.1 215.1 20.9 4.9 20.8 0.0

758 K, 0.251 g·cm23 0.030 1208 2439 21453 2825 21275 2830

0.0024 1208 2209 2402 640 2138 2972

0.00047 1208 2128 2169 240 232 2872
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It should be noted that the concentration dependence of the molar conductivity

in aqueous solutions at temperatures near or above the critical point of water is

dominated by the association constant (last term in Eq. 10.46), and consequently

negative deviations from the limiting law are expected. Fig. 10.7 shows that an

NaCl solution at 579.4 K and 9.8 MPa slightly deviates from the ideal behavior

due to its extensive dissociation (KA ¼ 8.9, according to Zimmerman et al., 1995).

The association constant increases with temperature following the Arrhenius law

and the negative deviations from the limiting law become very large, as can be

seen in Fig. 10.7 for NaCl at 673.1 K and 28.0 MPa (KA ¼ 1.5 £ 104).

10.6.2. Diffusion in Concentrated Solutions

Prior to discussing the methods for computing the concentration dependence of

diffusion in electrolyte solutions, it is necessary to classify the diffusion processes

that are of interest in practice. In general, it is necessary to distinguish between

self-diffusion (also referred to as intradiffusion) and mutual diffusion (or

interdiffusion). Following Mills and Lobo (1989), we use the term ‘self-diffusion’

to denote three cases, i.e.,

1. Diffusion in a pure fluid;

2. Tracer (or single-ion) diffusion, i.e., the diffusion of a tracer species that is

chemically equivalent to one of the ions in the solution, but is isotopically

different. Since the different isotopes are chemically identical, the tracer

diffusion is equivalent to the self-diffusion of the labeled ion in the solution.

3. Diffusion of a species that is not an isotopomer of any other component of

the solution, hence is chemically different. In this case, the diffusing species

must be present in a trace amount.

On the other hand, the terms mutual- or interdiffusion pertain to the diffusion

in a system in which there is a concentration gradient. A significant difference

between mutual- and self-diffusion in binary solutions lies in the electroneutrality

constraint. In mutual diffusion, the constraint of maintaining electrical neutrality

entails that positive and negative ions move along the concentration gradient

at the same speed. Therefore, in a binary solution, there is only one mutual

diffusion coefficient. In self-diffusion, however, the electrical neutrality constraint

does not apply and it is convenient to define the self-diffusion coefficients

separately for all species in the solution (e.g., for the cation, anion and solvent

molecule in a binary solution). Thus, mutual diffusion coefficients are usually

measured for electrolytes as a whole whereas self-diffusion coefficients are

obtained for individual species.

There is no simple relationship between self- and mutual diffusion coefficients

for systems at finite concentration. Such a relationship is available only at infinite

dilution and is given by Eq. 10.16 for the special case of a system consisting of one

cation and one anion. Thus, separate computational models are necessary to

calculate mutual- and self-diffusion coefficients.
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On the molecular level, the difference between mutual- and self-diffusion

manifests itself in the relaxation and electrophoretic effects (cf. Robinson and

Stokes, 1959). The relaxation effect arises from the disturbance of the symmetrical

arrangement of ions in the solution as they move. The electrophoretic effect results

from the transfer of force, through the solvent, between moving ions. The

relaxation effect is important for self-diffusion whereas it vanishes for mutual

diffusion in binary solutions. This is because, in mutual diffusion, the positive and

negative ions in a binary solution move with the same velocity, thus preserving the

symmetry of the ionic atmosphere. In self-diffusion, the tracer ion moves against

the background of non-diffusing ions, which disturbs the symmetry of the ion

atmosphere and produces the relaxation effect. The electrophoretic effect, on the

other hand, can be neglected for self-diffusion whereas it remains significant for

mutual diffusion. The electrophoretic effect is negligible for self-diffusion because

the concentration of the tracer species can be regarded as infinitesimally low.

Thus, quantitative models for self-diffusivity should incorporate only the

relaxation effect.

10.6.2.1. Self-Diffusion

As with electrical conductivity, the concentration dependence of self-diffusion has

been extensively studied using the methods of statistical mechanics. Onsager

(1931a,b, 1945) developed a limiting law using the Debye and Hückel (1924)

equilibrium distribution functions. This theory was later extended to multi-

component solutions by Onsager and Kim (1957). According to this law, the

relaxation effect causes the deviation of the self-diffusion coefficient from its value

at infinite dilution, i.e.,

Di ¼ D0
i 1 þ

dki

ki

� �
ð10:47Þ

where dki=ki is the relaxation term and is given by

dki

ki

¼ 2
kDz2

i e2

31kT
ð1 2

ffiffi
d

p
Þ ð10:48Þ

where kD is the inverse Debye screening length, defined in Section 10.6.1, zi is the

charge and 1 is the dielectric constant. In the simple case of a tracer species 1 in an

electrolyte containing ions 2 and 3, the function d takes the form

d ¼
lz1l

lz1lþ lz2l
lz2ll0

2

lz1ll0
2 þ lz2ll0

1

þ
lz3ll0

3

lz1ll0
3 þ lz3ll0

1

 !
ð10:49Þ

where l0
i denotes the limiting conductivity of ion i. This model is valid only within

the validity range of the Debye–Hückel distribution functions, i.e., for dilute

solutions.
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More recently, Bernard et al. (1992) developed an expression for dki=ki for

the unrestricted primitive model, i.e., a system of ions with different sizes in a

dielectric continuum. This expression was obtained by combining the Onsager

continuity equations with equilibrium correlation functions calculated from the

MSA theory. This made it possible to extend the range of concentrations for

which the model is applicable to approximately 1 M. In the MSA theory, the

characteristic parameters are the sizes of ions in the solution. In a related paper,

Chhih et al. (1994) developed a simplified expression, in which the average size

approximation was used for the ionic sizes. The MSA expressions for dki=ki are

given in the original papers and will not be repeated here. Bernard et al. (1992)

and Chhih et al. (1994) demonstrated that the MSA theory is capable of

reproducing experimental data at room temperature up to 1 M for monovalent

ions using crystallographic radii as characteristic parameters for ions. Because of

a lack of self-diffusion data for relatively concentrated solutions at high

temperature, the validity of such predictions at elevated temperatures has not

been verified.

Anderko and Lencka (1998) utilized the MSA theory of self-diffusion to

develop a model that is applicable to concentrated aqueous electrolyte solutions

and, at the same time, can be used for both ionic and nonionic species (e.g., solvent

molecules or dissolved gases). For this purpose, they noted that in systems with

substantial ionic concentration, the long-range interionic forces are effectively

screened to short range by patterns of alternating charges. Then, interionic forces

can be combined with all other interparticle forces on the same basis. Thus, all

interparticle forces in concentrated solutions can be effectively treated as short-

range forces and the solution properties can be calculated by methods similar to

those for nonelectrolytes. The alternating charge pattern does not apply to dilute

solutions and, therefore, ‘nonelectrolyte-type’ theories are not necessary in the

dilute region. This rationale was used previously (Pitzer, 1980; Pitzer and

Simonson, 1986) to develop thermodynamic models by combining a long-range

electrostatic interaction term with terms developed for nonelectrolyte solutions.

This approach is also applicable to transport properties. In the case of self-

diffusion, the composition dependence in concentrated solutions can be

represented by the hard-sphere theory, which is applicable to nonelectrolyte

solutions. Therefore, Eq. 10.47 can be modified as follows:

Di ¼ D0
i

DHS
i

D0
i

 !
1 þ

dki

ki

� �
ð10:50Þ

where the first term in parentheses denotes the hard-sphere contribution. For

binary systems, a closed-form expression for the hard-sphere term was developed

by Tham and Gubbins (1971). As with the MSA theory, the hard-sphere term

can be computed if the radii of all ions and neutral species are known. To a first

approximation, crystallographic radii can be used. For more concentrated
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solutions, it is necessary to use effective species radii as described by Anderko and

Lencka (1998).

To illustrate the features of this model as well as the general behavior of self-

diffusivities as a function of concentration, Fig. 10.8 shows the behavior of

diffusing species in the system LiCl þ H2O þ O2 at 298 K. Unfortunately, such

experimental data are not available at elevated temperatures, so we have to rely on

room-temperature data to assess the performance of the model. As shown by the

dotted lines in Fig. 10.8, the model can predict the composition dependence up to

ca. 1 M using crystallographic radii. Beyond this range, effective radii are

necessary. It should be noted that the adjustment of radii is necessary only for ionic

species that exist in high concentrations (e.g., effective radii are needed only for

Liþ and Cl2 and not for H2O or O2 in the example shown in Fig. 10.8).

Experimental self-diffusion data are relatively abundant for conditions near

room temperature. The compilation by Mills and Lobo (1989) provides a

comprehensive collection for ions and water molecules in various solutions. These

data, however, are in most cases limited to temperatures below 373 K. Thus, it is

necessary to rely on model predictions to evaluate the concentration dependence

of self-diffusivity at higher temperatures. Such predictions should be reasonable

because most of the temperature dependence of self-diffusivity is embedded in

Fig. 10.8. Self-diffusion coefficients for Liþ, Cl2 and O2 in the system LiCl þ H2O þ O2 at

298.15 K. The lines were obtained from a model that combines the relaxation and hard-sphere terms

(Eq. 10.50) using crystallographic radii (dashed lines) or effective radii (solid lines). The data for the

Liþ and Cl2 ions were taken from the compilation of Mills and Lobo (1989), pp. 97–110: S — Liþ,

Braun and Weingärtner (1988); X — Liþ, Tanaka and Nomura (1987); K — Liþ, Turq et al. (1971);

X — Cl2, Mills (1957) and X — Cl2, Tanaka and Nomura (1987). The data for O2 (X) were taken

from Ikeuchi et al. (1995).
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the diffusivity at infinite dilution ðD0
i Þ: Both the relaxation and hard-sphere terms

are relatively weakly dependent on temperature. The relaxation term depends on

the dielectric constant of the solvent. The hard-sphere term depends on the density

of the solution, which can be reasonably computed from a separate model. Also,

the effective ionic radii, which determine the composition dependence of both

terms for concentrated solutions, are independent of temperature (Anderko and

Lencka, 1998), at least within a moderate temperature range, i.e., up to 373 K. This

allows the model to provide reasonable estimates at higher temperatures even

though the model parameters are determined from data at lower temperatures.

10.6.2.2. Mutual Diffusion

In contrast to self-diffusion, mutual diffusion coefficients must be defined with

respect to a certain reference frame. The volume-fixed reference frame defines the

flux of diffusing species across a plane fixed so that the total volumes on each side

of the plane remain constant. Such a frame is fixed with respect to the measuring

apparatus. Other reference frames have been described by Tyrrell and Harris

(1984) and will not be discussed here. A general expression for the volume-fixed

diffusion coefficient in electrolyte or nonelectrolyte solutions has been derived by

Hartley and Crank (1949) for a binary system composed of two components, A

and B. In such a system, there is only one mutual diffusion coefficient, DV, and it is

given by

DV ¼
› ln aA

› ln xA

ðxBD0
AB þ xAD0

BBÞ
h0

B

h
ð10:51Þ

where x denotes the mole fraction, h is the viscosity, D0
AB is the tracer diffusion

coefficient of A at infinite dilution in B and D0
BB is the self-diffusion coefficient of

B in B. Because of symmetry, the same value of DV can be obtained by switching

the subscripts A and B. The first two terms can be derived by considering the

simultaneous diffusion of the components A and B on the assumption that their

partial molar volumes are constant. However, the last term, h0
B=h; was introduced

into Eq. 10.51 on an empirical basis. The empirical effectiveness of this term is a

manifestation of the fact that the effects of concentration on both diffusion and

viscosity follow the same regularities. Therefore, empirical data (or correlation

equations) for viscosity can be utilized to predict the concentration dependence

of mutual diffusion. Over wide concentration ranges, it is generally observed

that the largest effects on mutual diffusivity are due to the thermodynamic term

› ln aA=› ln xA and the viscosity correction. Thus, the two most significant terms

can be predicted using data for different properties (i.e., viscosity data and vapor

pressure or other equilibrium data for the thermodynamic term).

In dilute binary solutions, the concentration dependence of mutual diffusion is

primarily due to the electrophoretic effect as discussed above. Onsager and Fuoss
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(1932) developed a limiting law for the mutual diffusivity. In concentrated

solutions, however, the electrophoretic effect becomes numerically small in

comparison to the thermodynamic term.

Wishaw and Stokes (1954) and Robinson and Stokes (1959) utilized the

Onsager and Fuoss (1932) treatment of dilute solutions in conjunction with

the Hartley and Crank (1949) phenomenological equation to develop a predictive

correlation that is valid up to fairly high concentrations. The model was further

refined by assuming that the diffusing entity is a hydrated solute rather than bare

ions. This assumption introduced another characteristic parameter, the hydration

number h. The combined model is given for an MX–H2O solution by:

DMX ¼ ðD0
MX þ D1 þ D2Þ 1 þ m

d ln g

dm

� �
ð1 2 MwhmÞ

� 1 þ Mwm
nD0

w

D0
MX

2 h

 !" #
h0

h
ð10:52Þ

where D1 and D2 are the electrophoretic corrections, the second term in

parentheses is the thermodynamic term expressed in terms of molality, Dw
0 is the

self-diffusion coefficient of pure water, h0 is the viscosity of pure water, h is

the viscosity of the solution and n is the number of ions that result from the

dissociation of the solute. The electrophoretic terms are given, for a binary

solution, by

Dn ¼ kTAn

ðzn
1t0

2 þ zn
2t0

1Þ
2

anlz1z2l
ð10:53Þ

where t0
i are transference (or transport) numbers at infinite dilution, which can be

obtained from ionic limiting conductivities and the coefficients An are functions of

the dielectric constant and viscosity of the solvent (Robinson and Stokes, 1959;

Onsager and Fuoss, 1932). In the original work of Onsager and Fuoss (1932), both

electrophoretic corrections D1 and D2 are used. However, Robinson and Stokes

(1959) proposed dropping the D2 term for unsymmetrical electrolytes.

Eq. 10.52 has been shown to have good predictive capabilities for

concentrations up to several mol (kg H2O)21. Typical deviations are within 1%

for concentrations up to 1 molal and 2–3% up to several molal. Other techniques

for correlating mutual diffusion coefficients have been reviewed by Tyrrell and

Harris (1984) and Horvath (1985).

It should be noted that experimental data on the concentration dependence of

mutual diffusion coefficients are available only at room and at moderately elevated

temperatures. A comprehensive collection of data published until the late 1980s is

provided by Lobo and Quaresma (1989).

For high-temperature systems, model-based estimates are necessary. In

particular, Lindsay (1980) used Eq. 10.52 to estimate mutual diffusion coefficients
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for NaCl for temperatures up to 673 K. To make these estimates, Lindsay observed

that the ratio of limiting diffusivities D0
H2O=D0

MX and the hydration number h could

be assumed to be independent of temperature. Furthermore, Lindsay adjusted the

value of h using experimental data at room temperature up to 1 molal. The

thermodynamic term could be calculated directly because activity-coefficient data

are available for NaCl at high temperatures (Liu and Lindsay, 1971) and it is

responsible for most of the strong concentration dependence of the diffusion

coefficient observed at high temperature. Viscosity data (Kestin et al., 1981a,b)

could be used directly for temperatures up to 423 K and extrapolated to higher

temperatures. Fig. 10.9 shows the DMX=D0
MX ratios predicted using Lindsay’s

approach. As shown in Fig. 10.9, the predicted values are in reasonable agreement

with experimental data at room temperature. The agreement could be further

improved by fitting the hydration parameter h over the full concentration range. In

the absence of high-temperature data, this method can be recommended for

estimating mutual diffusion coefficients at elevated temperatures.

10.6.3. Viscosity of Electrolyte Solutions

As with electrical conductivity and diffusivity, the primitive model of long-range

electrostatic interactions in dilute electrolyte solutions makes it possible to derive

a limiting law for the relative viscosity (i.e., the ratio of the viscosity of the solution

Fig. 10.9. Concentration dependence (in relation to the infinite-dilution value) of mutual diffusion

coefficients of NaCl in H2O calculated using Eq. 10.52 and the procedure developed by Lindsay

(1980). The experimental data were taken from the compilation of Lobo and Quaresma (1989): X —

Rard and Miller (1979), 298.15 K; X — Miller (1966), 298.15 K and X — Vitagliano (1960),

323.15 K.
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to that of the solvent at the same temperature and pressure):

hr ¼ h=h0 ¼ 1 þ AI1=2: ð10:54Þ

A general expression for the coefficient A in multicomponent solutions was

developed by Onsager and Fuoss (1932):

A ¼ a
1

h0

2

1T

� �1=2 XNI

i¼1

mizi

li

 !
2 4r

X1
n¼0

cnsn

" #
ð10:55Þ

where a is a constant, 1 is the dielectric constant of the solvent, li is the limiting

conductivity of ion i, mi; r and s are functions of limiting conductivities and cn are

constants. When the li values are in S mol21·cm2, I is in mol dm23 and h0 is in

Pa·s, the constant a is 0.364541. This limiting law is valid in the concentration

range 0–0.002 molal. Since the viscosity of the solution in this range is not much

different from that of the pure solvent, the practical usefulness of this equation is

very limited. An important extension of the limiting law to somewhat higher

(although still small) concentrations was proposed by Jones and Dole (1929). For

multicomponent solutions, the Jones–Dole equation can be written as:

hr ¼ 1 þ AI1=2 þ
X

i

ciBi ð10:56Þ

where Bi are the Jones–Dole coefficients for each individual ion. This equation is

typically valid for concentrations up to 0.1 molal, although it may be applicable to

higher concentrations for some systems. The Bi coefficients are characteristic for

each ion and are additive for electrolytes. The ionic coefficients can be determined

from those for individual solutes with the often used convention BKþ ¼ BCl2 :
Therefore, the Jones–Dole equation should be treated as an extended limiting law

rather than a merely empirical expression. Much attention has been focused in the

literature on the relationship between the Bi coefficients and ion–solvent

interactions (cf. a review by Marcus (1985)). Although it is accepted that the

magnitude of the Bi coefficients depends on the structure-making and structure-

breaking properties of ions, no general technique is available for predicting the

coefficients.

A comprehensive collection of Bi coefficients at room temperature is available

in the compilation by Marcus (1997). Therefore, it is more important to predict the

temperature dependence of these coefficients than their absolute values. For this

purpose, a useful equation was proposed by Out and Los (1980):

B ¼ BE þ Bs exp½2KðT 2 273:15Þ� ð10:57Þ

where the parameter K can be assigned a universal value of 0.023. The

representation of experimentally determined B coefficients using the Out–Los

equation is shown in Fig. 10.10 for selected ions.
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As shown in Fig. 10.10, the variation with temperature of the B coefficients

becomes weaker with rising temperature. Therefore, the Out–Los equation can be

used to extrapolate the B coefficients to higher temperatures using experimental

data at temperatures below ca. 373 K. Moreover, Lencka et al. (1998) developed

a technique for predicting the parameter Bs in the Out–Los equation using the

entropy of hydration. Using this correlation, the B coefficients can be predicted as

a function of temperature using only one experimental point at room temperature

(which is the only experimental datum available for most ions).

To compute the viscosity of concentrated solutions, it is necessary to use

empirical techniques. Several techniques are available for single-solute systems

(Horvath, 1985). A particularly simple equation, known as the Othmer rule

(Korosi and Fabuss, 1968), relates the viscosity of a salt solution to that of water,

i.e.,

ln hrðT ;mÞ ¼ aðmÞ þ bðmÞ ln
hH2OðTÞ

hH2OðTrefÞ
ð10:58Þ

where aðmÞ and bðmÞ are empirical (typically, polynomial) functions of molality

but not of temperature. The advantage of this equation is its simplicity and

capability of correlating viscosity data essentially within experimental

uncertainty. Additionally, it performs well when extrapolated to higher

temperatures (Lindsay, 1980). However, it does not reduce to the Jones–Dole

equation at low concentrations and is not applicable to very concentrated

solutions. Thus, this equation is more suitable for the reduction of experimental

Fig. 10.10. Temperature dependence of the viscosity B coefficients calculated using the Out–Los

equation for selected ions.
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data in single-solute systems rather than for modeling the viscosity of more

complex solutions.

A more general approach to calculating the viscosity of concentrated solutions

is based on extending the Jones–Dole equation. A practical extension for single-

solute systems was first proposed by Kaminsky (1957), who added a quadratic

term to obtain an equation that is valid for concentrations up to several molal:

hr ¼ 1 þ Ac1=2 þ Bc þ Dc2: ð10:59Þ

Based on Kaminsky’s concept, Lencka et al. (1998) developed a general

expression for multicomponent systems that is valid up to saturation for most

aqueous systems:

hr ¼ 1 þ AI1=2 þ
X

i

ciBi þ
X

i

X
j

fi fjDijI
2 ð10:60Þ

where fi and fj are fractions of the ith and jth species, respectively, and Dij is the

interaction parameter between i and j. The fractions fi are defined as modified

molar fractions, i.e.,

fi ¼
ci=liP
k ck=li

ð10:61Þ

where the factor li is the greater of lzil or 1. For concentrated solutions, the

parameter Dij in Eq. 10.60 depends on the ionic strength:

Dij ¼ d1 þ d2I þ d3 expð0:08I3=2Þ ð10:62Þ

where d1; d2 and d3 are empirical parameters. The parameters d2 and d3 are

required only for systems with a substantial ionic strength (usually above 5 molal).

They have a weak temperature dependence, which can be expressed by a simple

exponential function:

di ¼ di;0 exp ½di;1ðT 2 273:15Þ�: ð10:63Þ

Eqs. 10.60–10.63 are suitable for modeling viscosity up to the saturation limit in

wide temperature ranges.

Viscosity data for electrolyte solutions are usually available only at room and

moderately elevated temperatures (below 373 K and in some cases up to 423 K). A

comprehensive collection of viscosity data is available in the compilation of Lobo

and Quaresma (1989). The system NaCl–H2O appears to be the only solution for

which data are available for higher temperatures (up to 473 K (Kestin and

Shankland, 1984) and a limited number of experimental points up to 629 K

(Semenyuk et al., 1977)). To illustrate the behavior of the viscosity in this

prototype system, Fig. 10.11 shows both absolute and relative viscosities as a

function of concentration and temperature at saturation pressure. Also, Fig. 10.11

H.R. Corti et al.364

ARTICLE IN PRESS

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806



illustrates the correlation of viscosity data using Eq. 10.60. This correlation was

performed using multiple data sets from the literature (Lobo and Quaresma, 1989;

Kestin and Shankland, 1984; Semenyuk et al., 1977), which explains some small

systematic deviations from the data at high concentrations (Lobo and Quaresma,

1989). The average deviation of the fit is 0.41% for a total of 302 experimental

points.

In addition to the temperature and concentration dependence (cf. Fig. 10.11),

the viscosity of electrolyte solutions exhibits a weak density dependence (cf.

Kestin and Shankland (1984) and references cited therein). The density

dependence results in a viscosity increment that is usually small at room

temperature (0.2–1.8% for a pressure increment from saturation to ca. 30 MPa),

but becomes more substantial at higher temperatures (2–4.5% at 473 K in the

same pressure range).

10.7. Thermal Conductivity of Electrolyte Solutions

Most of the data on the thermal conductivity of electrolyte solutions at high

temperature and pressure were reported during the last decade by Abdulagatov and

Magomedov (2000) up to 473 K and 100 MPa. The systems studied include LiCl,

NaCl, KCl, LiBr, KBr, KI, NaI, MgCl2, CaCl2, CdCl2, CoCl2, SrCl2, ZnCl2, CdBr2,

ZnI2, Sr(NO3)2, K2CO3 and BaI2. A few electrolytes (Zn(NO3)2, CaCl2 and NaCl)

were studied up to 573 K (Azizov and Magomedov, 1999; Abdullaev et al., 1998).

Fig. 10.11. Absolute and relative viscosity of the NaCl–H2O solution as a function of temperature

and concentration at saturation. The lines are obtained from Eqs. 10.60–10.63. The symbols denote

experimental data: S — 1.0661 m; K — 2.0178 m; X — 3.5161 m; f — 4.045 m; A — 4.4538 m

and X — 6.038 m. The data for 1.0661, 2.0178, 3.5161, 4.4538 and 6.038 m solutions are from

Kestin and Shankland (1984), those for 4.045 m are from Semenyuk et al. (1977).
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In very dilute solutions, the ion–ion interaction contribution to the thermal

conductivity (Bearman, 1964) is of the order of kD
3 (kD is the inverse Debye

length) or c 3/2, showing a behavior quite different from that found for the

electrical conductivity and viscosity in the concentration range where the Debye–

Hückel theory is valid. However, in practice the thermal conductivity of dilute or

moderately concentrated electrolyte solutions is described by a simple linear

equation in the molar concentration proposed by Riedel (1951) at room

temperature:

l ¼ l0 þ
X

i

aici ð10:64Þ

where l0 is the thermal conductivity of pure water and ai is the contribution of ion

i. McLaughlin (1964) extended this equation to 373 K by assuming that the

thermal conductivity of the electrolyte solutions has the same temperature

dependence as pure water. In terms of the salt molality, m, the equation proposed

by McLaughlin for the thermal conductivity (in W·m21·K21) is:

lðT ;mÞ ¼
1:1622l0ðTÞ

l0ðT0Þ
0:515 2 as

1000rðT;mÞm

1000 þ Msm

� 	
ð10:65Þ

where r is the mass density of the solution, Ms the molar mass of the salt, as the

sum of the a coefficients of the anion and cation, l0 is the thermal conductivity of

pure water and T0 ¼ 293 K.

The thermal conductivities of the salt solutions decrease with increasing

concentration, except for NaF, Na2CO3, Na2SO4, Na3PO4 and some alkaline

hydroxides (Li, Na and K). The coefficients ai are tabulated for several ions and

they are negative for most of the ions, except for OH2, F2, SO4
22, PO4

32 and

CrO4
22.

Nagasawa et al. (1983) analyzed Eq. 10.65 for the case of NaCl solutions in the

range 273–353 K and concentrations up to 5 mol·kg21 and concluded that the

disagreement between experimental and calculated values is 2% at most.

For all the electrolyte solutions studied up to 100 MPa, the thermal conductivity

at constant temperature and concentration increases almost linearly with pressure

(Nagasawa et al., 1983; Abdulagatov and Magomedov, 2001) with a slope quite

similar to that observed for pure water. In order to assess the pressure dependence

of the thermal conductivity of electrolyte solutions, DiGuilio and Teja (1992)

proposed a correlation which allows calculating the thermal conductivity of the

solution at pressure p by knowing its thermal conductivity at 0.1 MPa:

lðp;mÞ ¼ lðp0;mÞ
l0ðpÞ

l0ðp0Þ
ð10:66Þ

where l0 is the thermal conductivity of pure water and p0 ¼ 0.1 MPa. It was found

that this simple correlation could reproduce experimental values for several

electrolytes within 2% (Abdulagatov and Magomedov, 1998).
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The temperature dependence of the thermal conductivity at constant pressure

and concentration is more complex but it shows a common pattern for all the

electrolytes studied up to 573 K. Along each isobar–isopleth, the thermal

conductivity has a maximum at a temperature between 400 and 420 K, which is

almost independent of pressure. This behavior mimics that observed for pure water

as a function of temperature (see Chapter 1).

Abdulagatov and Magomedov (1997) proposed an empirical equation to

describe the temperature, pressure and concentration dependence of the thermal

conductivity of electrolyte solutions using only one electrolyte-dependent

adjustable parameter. The equation is written in the form of a correction to l0,

the thermal conductivity of pure water, and it is able to fit experimental results

with reasonable accuracy. However, we discourage its use because the thermal

conductivity of water is represented by a polynomial equation that yields values of

l0 different from those obtained with the IAPWS Release for this property

(IAPWS, 1998).

10.8. Multicomponent Ionic Solutions

Almost all systems encountered in industry or in natural environments are

multicomponent. At the same time, the vast majority of experimental data,

particularly at elevated temperatures, is for single-solute systems. Moreover,

many theories that have been developed for predicting transport properties are

applicable only to binary solutions. For example, this is the case for the

MSA theories for the concentration dependence of electrical conductivity and

self-diffusivity and for the semi-empirical model for calculating mutual

diffusivity presented in previous sections. Therefore, it is important to have

reliable methods for predicting the properties of multicomponent systems using

the properties — either experimental or computed — of single-solute systems. In

this section, we discuss such methods for electrical conductivity, diffusivity and

viscosity.

10.8.1. Electrical Conductivity

To calculate the electrical conductivity of multicomponent mixtures, it is

necessary to use a mixing rule that utilizes the conductivities, either

experimentally obtained or calculated, of binary subsystems containing one

cation and one anion. The functional form of the mixing rule should be guided by

its empirical effectiveness and should be suitable for use in conjunction with

theories for binary electrolyte solutions. For example, Miller (1996) reviewed

several possible mixing rules for two-solute systems (e.g., NaCl þ MgCl2 þ

H2O). Such mixing rules can be written in terms of various solute fractions (molar,
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equivalent or ionic strength) and the specific conductivity of constituent binary

subsystems, i.e.,

kðKÞ ¼ a1k1ðKÞ þ a2k2ðKÞ ð10:67Þ

where a1 and a2 are the fractions of binary subsystems 1 and 2, respectively, and

the specific conductivities of the binary subsystems (i.e., k1 and k2) are evaluated

at constant concentration (K), which can be either constant total molarity, constant

equivalent concentration or constant ionic strength.

Anderko and Lencka (1997) developed a general mixing rule for multi-

component systems by considering plausible ways of averaging the contributions

of constituent binary cation–anion pairs. This mixing rule takes the form:

k ¼ ceq

XNC

M¼1

XNA

X¼1

fMfX½lMðXÞðIÞ þ lXðMÞðIÞ� ¼ ceq

XNC

M¼1

XNA

X¼1

fMfXL
0
MXðIÞ ð10:68Þ

where ceq is the total equivalent concentration, fM and fX are the equivalent

fractions of the cation and anion, respectively, lMðXÞ is the conductivity of cation

M in the presence of anion X, lXðMÞ is the conductivity of anion X in the presence of

cation M, and NC and NA are the total numbers of cations and anions, respectively.

The equivalent fractions are defined as

fi ¼
lzilci

ceq

ð10:69Þ

and the equivalent concentration ceq is given by

ceq ¼
XNC

M

cMlzMl ¼
XNA

X

cXlzXl: ð10:70Þ

The conductivities lMðXÞ and lXðMÞ are defined at constant molar ionic strength I.

For this purpose, these quantities are calculated at the concentrations of the ions in

a binary pair MX given by:

cM ¼
2I

lzMlðlzMlþ lzXlÞ
; cX ¼

2I

lzXlðlzMlþ lzXlÞ
: ð10:71Þ

Eq. 10.71 has been derived to satisfy the condition of a constant ionic strength.

This mixing rule gives accurate predictions for the electrical conductivity of

mixed systems. This is illustrated in Fig. 10.12 for the system NaCl–MgCl2–

H2O. In this example, the conductivities in the binary subsystems Naþ–Cl2 and

Mg2þ–Cl2 were calculated using the MSA model with effective ionic radii

(Anderko and Lencka, 1997) and the conductivities of the mixed system were

obtained using Eqs. 10.68–10.71. There are no data to test the mixing rule at high

temperatures over substantial concentration ranges. However, there is every
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indication that the mixing rule should be equally applicable at high and low

temperatures (Sharygin et al., 2001).

Recently, Sharygin et al. (2001) have shown that Eq. 10.68 is a special case of

a general mixing rule that was originally developed by Reilly and Wood (1969)

for thermodynamic properties such as volumes, enthalpies and Gibbs energies

of mixing. In its version for electrical conductivity, the Reilly–Wood mixing rule

contains two additional terms, which represent cation(1)–cation(2)–anion and

cation–anion(1)–anion(2) mixing effects:

k ¼ ceq

XNC

M¼1

XNA

X¼1

fMfXL
0
MXðIÞ þ RTc2

eq

XNC

M,N

XNA

Y¼1

fMfNfYkY
MN

þ RTc2
eq

XNC

M¼1

XNA

X,Y

fMfXfYkM
XY ð10:72Þ

where kY
MN and kM

XY are ternary mixing parameters, which can be evaluated if very

accurate data are available for the mixed systems MY–NY–H2O and MX–MY–

H2O, respectively. The first term of this mixing rule is equivalent to Eq. 10.68. For

practical applications to electrical conductivity of multicomponent solutions, it

appears that the first term is entirely sufficient (cf. Fig. 10.12).

Fig. 10.12. Application of Eqs. 10.68–10.71 to calculate electrical conductivity in the mixed system

NaCl–MgCl2–H2O at 298.15 K. The lines are calculated from the model and labeled according to

the NaCl:MgCl2 ratio. The symbols denote experimental data for fixed NaCl:MgCl2 ratios: X — 1:0

(Bianchi et al., 1989); X — 1:0 (Chambers et al., 1956); X — 3:1 (Bianchi et al., 1989); K — 1:1

(Bianchi et al., 1989); S — 1:3 (Bianchi et al., 1989); X — 0:1 (Bianchi et al., 1989) and X —

Miller (1966).
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10.8.2. Diffusion

As with electrical conductivity, theories for diffusion coefficients in multi-

component systems are available only for dilute solutions (Onsager and Kim,

1957; Onsager and Fuoss, 1932). For more concentrated solutions, it is necessary

to use semi-empirical mixing rules. In this chapter, we discuss such mixing rules

for self- and mutual diffusion coefficients.

10.8.2.1. Self-Diffusion

In the case of self-diffusion, the Stefan–Maxwell formalism of diffusion (Eq.

10.20) has been used to derive a mixing rule that makes it possible to predict

self-diffusivities of both ionic and neutral solution species in multicomponent

solutions as long as they can be obtained for the constituent binary systems (i.e.,

systems containing one salt or one molecular solute in water). To derive this

mixing rule, Anderko and Lencka (1998) assumed that a multicomponent

mixture contains NC cations, NA anions and NN neutral solutes. Then, the cations

and anions can be formally separated into NCNA neutral solutions containing

only one cation and one anion. Further, it can be assumed that each of such

hypothetical solutions contains nþðdÞ moles of cations, n2ðdÞ moles of anions and

nsðdÞ moles of the solvent, where d ¼ 1;…;NCNA is an index that identifies the

hypothetical solution. Similarly, the neutral solutes can be placed into NN

hypothetical solutions, which contain nl moles of the solute and nsðlÞ moles of the

solvent ðl ¼ 1;…;NNÞ: Then, the self-diffusivity in a multicomponent solution

can be calculated as

Di ¼
nTPNCNA

d¼1

nsðdÞ þ nþðdÞ þ n2ðdÞ

DiðdÞ

þ
PNN

l¼1

nsðlÞ þ nl

DiðlÞ

ð10:73Þ

where the coefficients DiðdÞ and DiðlÞ are obtained for the constituent binary

solutions at the same total number density as that of the multicomponent mixture.

Although this mixing rule has been rigorously derived, it does not specify how

the multicomponent solution of interest should be subdivided into hypothetical

single-solute solutions. For this purpose, arbitrary assumptions have to be made.

To define the quantities nþðdÞ and n2ðdÞ; it can postulated that the amounts of the

cation and anion in the hypothetical single-solute solution should be proportional

to the concentrations of the cation and the anion in the multicomponent solution.

Furthermore, the hypothetical single-solute solution should be electrically

neutral. Expressions that satisfy these conditions are given by Anderko and

Lencka (1998).
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10.8.2.2. Mutual Diffusion

Mutual diffusion in multicomponent systems has been extensively investigated

using both the Fick (Eq. 10.17) and Stefan–Boltzmann (Eq. 10.20) diffusion

formalisms. It should be noted that mutual diffusion in multicomponent solutions

is not a simple extension of binary diffusion. When more than one salt is present in

a solution, the restriction that anions and cations must diffuse with the same speed

is lifted. This has important implications. On the phenomenological level, there

may be a substantial modification in the main diffusion coefficients Dii and large

cross coefficients Dij (cf. Eq. 10.17). On the molecular level, electrostatic

interactions manifest themselves in both the electrophoretic and relaxation effects

whereas mutual diffusion in a binary solution is affected only by the

electrophoretic effect.

Diffusion in multicomponent systems can be comprehensively described

using the Onsager phenomenological coefficients aij; which relate the flux of ion i

(i.e., Ji) to the gradient of the electrochemical potential (Eq. 10.6). According to

the ORR, Eq. 10.7, the matrix of the aij coefficients is symmetric (i.e., aij ¼ aji).

Thus, each binary subsystem is characterized by three coefficients: acation – cation,

aanion – anion and acation – anion. The aij coefficients can be theoretically predicted only

for very dilute multicomponent solutions (below 0.01 molal). Onsager and

coworkers (Onsager and Fuoss, 1932; Onsager and Kim, 1957; Chen and Onsager,

1977) derived limiting expressions, which can be applied to compute aij using the

limiting conductivities of species and the dielectric constant, viscosity and density

of the solution.

For more concentrated solutions, the aij coefficients can be calculated only from

experimental data. Miller (1966, 1967a,b) performed a comprehensive analysis

of the relationship between the Onsager coefficients and observable transport

properties. In particular, Miller (1966) has derived a rigorous expression for

calculating these coefficients when electrical conductivity (L), transference

number ðtiÞ and mutual diffusivity ðDvÞ data are available. Then, the aij coefficients

can be calculated for a binary solution as:

aij ¼
titjk

F2zizj

þ
ninjcDv

RTn 1 þ ðmd ln gÞ=ðdmÞ
� � ð10:74Þ

where ni are the stoichiometric coefficients of ionization of the salt, n ¼ ni þ nj;
and g is the molality-based activity coefficient.

If all aij coefficients are known for a multicomponent solution, the Fick’s-law

diffusion coefficients Dij (cf. Eq. 10.17) can be computed. These diffusion

coefficients can be computed on an ionic basis (i.e., when i and j denote ions) and

on a neutral solute basis (i.e., when i and j denote salts). Expressions for the ionic

mutual diffusion coefficients have been obtained by Felmy and Weare (1991)
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following earlier work by Lasaga (1979) and Miller (1967a,b):

Dij ¼ RTV
XN
k¼1

aik hkj 2 hk0

�Vj

�V0

 !"

2

PN
m¼1

PN
n¼1

PN
k¼1 aikzkzmamn hnj 2 hn0ð �Vj= �V0Þ

� �
PN

m¼1

PN
n¼1 zmznamn

3
5 ð10:75Þ

where

hkj ¼
› ln ak

›nj

ð10:76Þ

and �Vi is the partial molal volume of species i, V is the solution volume, ak is the

activity of species k and the subscript 0 represents the solvent.

Expressions for calculating the diffusion coefficients Dij of salts (rather than

ions) in terms of the Onsager aij coefficients have been developed by Miller

(1967a,b) and Leaist and Lyons (1980). Such coefficients can be directly

compared with experimental data, especially for ternary solutions.

The aij coefficients are usually strong functions of concentration. Thus, their

concentration dependence has to be accurately known before they can be

applied to multicomponent systems. According to Miller (1967a,b), the aij

coefficients should be evaluated at the same normality in the binary as in the

multicomponent system. To evaluate the aij coefficients, a considerable amount

of accurate experimental data (i.e., electrical conductivity, transference

numbers and binary mutual diffusivity) is necessary. While the coefficients

for cation–anion pairs can be obtained from data for binary solutions, those for

cation–cation or anion–anion pairs should be obtained from common-ion

ternary data. Miller (1967a,b) developed mixing rules in order to evaluate such

parameters without having to resort to ternary data. These mixing rules were

further verified by Felmy and Weare (1991), Kim (1982) and Kim et al.

(1973).

Even with this mixing rule, prediction of mutual diffusivities requires the

simultaneous availability of diffusion coefficients, electrical conductivity and

transference numbers for constituent binary subsystems at the temperature of

interest. Such data are available for a limited number of systems, usually only at

room or slightly elevated temperatures (Rard and Miller, 1987, 1988; Rard et al.,

1996). This severely limits the usefulness of this methodology, especially at high

temperatures. An alternative, simpler approach based on the Stefan–Maxwell

formalism has been proposed by Pinto and Graham (1987). However, a practical

method for predicting mutual diffusion coefficients at high temperatures remains

to be developed.
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10.8.3. Viscosity

Unlike electrical conductivity and diffusivity, viscosity can be calculated from a

model that is directly applicable to multicomponent solutions. For dilute solutions,

the Jones–Dole equation (Eq. 10.56) can be rigorously written for multi-

component systems because of the additivity of the B coefficients for individual

ions. Also, the semi-empirical species–species interaction contribution that

extends the Jones–Dole equation to concentrated solutions (Eq. 10.60) is given in

a multicomponent form. Lencka et al. (1998) verified the performance of this

equation for selected systems containing multiple salts and obtained good

agreement with experimental data.
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