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INTRODUCTION
Transport properties of electrolyte solutions are needed for
the design and optimization of various industrial processes
and, at the same time, provide insights into solution struc-
ture and interactions. In particular, they are required for
modeling the transport processes that are inherent in corro-
sion phenomena and various electrochemical manufacturing
processes. The development of theories of transport prop-
erties of dilute electrolyte solutions has been a classical
subject of statistical mechanics since the pioneering works
of Onsager and Fuoss [1]. However, engineering-oriented
models that cover wide ranges of concentration and tem-
perature have a much shorter history and have not been
available until recently. In this paper, we summarize the
features of recently developed engineering models for self-
diffusivity, electrical conductivity and viscosity.

PROPERTIES OF INDIVIDUAL IONS AT INFINITE
DILUTION
Limiting conductivities and diffusion coefficients at infinite
dilution provide a starting point for the computation of trans-
port properties at finite concentrations. Unlike the finite-con-
centration properties, the limiting properties are additive with
respect to individual ions. For a practical model, a procedure
is necessary to compute the limiting properties as functions
of temperature.

In the dense liquid phase region at temperatures up to ca.
550 K, the temperature dependence of limiting conductivity
λ0 can be accurately represented as

T
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where η is the viscosity of pure water and A and B are ad-
justable constants. The limiting diffusivity is directly related
to the limiting conductivity by the Nernst-Einstein equation.

Anderko and Lencka [2] developed a correlation between
the parameter B (eq. 1) and the structural entropy of ions [3],
which makes it possible to predict the temperature depend-
ence of λ0 with good accuracy when experimental data are
available only at a single temperature. This correlation is
shown in Figure 1. A common curve is obtained for the
structure-breaking ions (i.e., for ∆S0

str > 0) and weak struc-
ture-making ones (i.e., for -100 4 ∆S0

str < 0 J/mol K). This line
splits in two for ∆S0

str values below -100 J/mol K. For
strongly electrostrictive structure-makers, a horizontal line at
B/|z|=0 is obtained. Figure 2 shows the calculated tempera-
ture dependence of limiting conductivities for selected ions.
The dashed lines show the conductivities predicted by cal-
culating the parameter B from the generalized correlation
(Figure 1) and the parameter A from a single experimental
point at 25 °C. In this way, limiting conductivities and diffu-
sivities can be predicted over wide temperature ranges even
when only one experimental point is available.
In the case of viscosity, individual ions are characterized by
the Jones-Dole Bvis coefficients. The temperature depend-
ence of the Bvis parameters can be expressed using the
equation developed by Out and Los [4]:

Figure 1: Relationship between the Parameter B /Eq. (1)/,
and the Structural Entropy ∆S0

str for Ions.
The circles represent the values of B, divided by
ionic charge, that have been obtained by fitting
limiting conductivity data for individual ions.

Figure 2: Limiting Ionic Conductivities of Li+, Na+, K+, Cs+,
Ag+ and Cl-.
The solid lines have been calculated by fitting
the parameters A and B /Eq. (1)/ to individual



Modeling Transport Properties of Electrolyte Solutions PowerPlant Chemistry

524 PowerPlant Chemistry  2000, 2(9)

data. The dashed lines have been obtained by
computing the parameter B from the generalized
correlation (Figure 1) and utilizing a single
experimental point at 298.15 K to calculate A.

Figure 3: Relationship between the Parameter Bs /Eq. (2)/
and the Entropy of Hydration of Ions.
The symbols represent the values obtained by
fitting Eq. (2) to experimental values of viscosity
Bvis coefficients and the lines represent model
values for mono-, di- and trivalent ions.
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As with limiting conductivity, the temperature dependence of
Bvis is determined by the structural effects caused by the
interactions of ions with the H2O hydrogen-bonded network.
Lencka et al. [5] found that the parameter Bs can be corre-
lated with the entropy of hydration. This correlation is shown
in Figure 3 for mono-, di- and trivalent ions. With this corre-
lation, the Bvis coefficient can be predicted over a wide range
of temperatures using only one experimental point at am-
bient temperatures. Figure 4 illustrates such predictions for
selected ions.

CONCENTRATION DEPENDENCE
In relatively dilute electrolyte solutions, the main effects that
determine the deviations of transport properties from ideal
behavior are the relaxation and electrophoretic effects [6].
However, the concentrations that are of interest for industrial
applications range from 0 to ca. 30 M. In systems with a
substantial ionic concentration, the long-range interionic
forces are effectively screened to short-range by patterns of
alternating charges. Then, interionic forces can be combined
with all other interparticle forces on the same basis. Thus, all
interparticle forces in concentrated solutions can be effec-
tively treated as short-range forces and the solution proper-
ties can be calculated by methods similar to those for
nonelectrolytes. At the same time, the alternating charge
pattern and its accompanying screening effect are lost in the

dilute solution range and, therefore, the effects of long-range
electrostatic interactions are significant at low concentra-
tions. This rationale has been used to develop thermody-
namic models by combining a long-range electrostatic inter-
action term with terms developed for nonelectrolyte solutions
[7-8]. This approach is also applicable to transport proper-
ties.

Figure 4: Viscosity Bvis Parameters for Selected Ions.
The symbols denote experimental data and the
lines have been obtained  by computing the
parameter Bs from the generalized correlation
(Figure 3) and utilizing a single experimental
point at 298.15 K to calculate BE in Eq. (2).

Diffusivity
In the case of self-diffusion, long-range electrostatic inter-
actions manifest themselves in the relaxation effect. The
concentration dependence of self-diffusion in concentrated
solutions can be, at the same time, represented by the hard-
sphere theory, which is adequate for nonelectrolyte solu-
tions. As described in a previous paper [9], the electrostatic
and hard-sphere contributions can be combined as:
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where Di
0 is the limiting diffusivity and the two terms in pa-

rentheses denote the hard sphere and relaxation contri-
butions. For binary systems, expressions for the hard-
sphere and relaxation terms were developed by Tham and
Gubbins [10] and Bernard et al. [11], respectively. Both
terms can be computed if the radii of all ions and neutral
species are known. As a first approximation, crystallographic
radii can be used. In fact, this approximation works for rela-
tively dilute solutions (up to ca. 1 M). For more concentrated
solutions, it is necessary to use effective species radii de-
fined as:
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where σi(j) accounts for the effect of species j on the effective
diameter of species i. The σi(j) parameter has the meaning of
a molecular or ionic radius (i.e., a half of the diameter). For
consistency, σi(i) is equal to the crystallographic radius of the
species i. Since closed-form expressions for the electrostatic
and hard-sphere terms are available only for binary systems,
Anderko and Lencka developed a mixing rule based on the
Stefan-Maxwell formalism of multicomponent diffusion [9].

Electrical Conductivity
The conductivity of an ion in a finite-concentration solution
(λi) is related to the limiting conductivity of this ion (λi0) by
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where δX/X is the relaxation effect and δvi
el/vi

0 is the electro-
phoretic correction. As with diffusivity, the expressions for
the relaxation and electrophoretic terms depend on the ionic
radii [11]. To make calculations for concentrated solutions,
Anderko and Lencka [2] introduced effective ionic radii. Also,
a mixing rule was introduced to extend Eq. (5) to multicom-
ponent systems.

Viscosity
The concentration dependence of the viscosity of electrolyte
solutions is calculated as a sum of a long-range electrostatic
term, contributions of individual ions (as quantified by the
Bvis coefficients) and contributions of interactions between
ions or neutral species. A general expression for the relative
viscosity ηr is written as:
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where the terms LR
rη , s

rη  and ss
r

−η  are the contributions of
long-range electrostatic effects, individual species and spe-
cies-species interactions, respectively [5]. The LR

rη term is
calculated from a model that recognizes electrostatic inter-
actions between point charges in a dielectric continuum [1].
The s

rη contribution is calculated from the Bvis coefficients

for all species. The ss
r

−η term is expressed using a function
developed in [5] and contains binary parameters that are
regressed from experimental data at finite concentration.

Results and Discussion
The performance of the transport property models has been
tested for a large number of single-solute and multicom-
ponent systems. Figures 5-8 show the results for self-diffu-
sivity. In Figure 5, self-diffusivities are shown for all three
species that exist in the CaCl2 + H2O system. The dotted
lines in Figure 5 show the results obtained using only crys-
tallographic diameters. As expected, a reasonable agree-
ment with experimental data has been obtained only for
relatively dilute solutions, i.e., for concentrations below 1 m.
At higher concentrations, the model with crystallographic
parameters fails to reproduce the experimentally observed
rapid decrease of diffusivities with concentration. On the
other hand, the model with effective ionic diameters (eq. 4)
reproduces the data with very good accuracy. This is shown
by the solid lines in Figure 5. After verifying the performance
of the model for single-solute systems, calculations were
performed for mixed systems. Figure 6 shows the results for

the self-diffusion coefficients of H2O and Na+ in the
NaCl + MgCl2 + H2O system. For this system, the effective
ion diameters were regressed from experimental data for the
constituent binary systems. The dashed lines in Figure 6
show the diffusivities in the single-solute solutions containing
NaCl and MgCl2. The solid lines show the predicted
diffusivities in a mixed solution with a 1:1 ratio of NaCl to
MgCl2. As shown in Figure 6, the diffusivities in the mixed
solution are represented with the same accuracy as those in
the single-solute solutions.

Figure 5: Self-Diffusion Coefficients of Ca2+ and Cl-

at 298.15 K and H2O at 296.15 K in the
CaCl2 + H2O System.
The lines have been obtained from the model
using crystallographic ion radii (dotted lines) and
effective radii (solid lines). The symbols denote
experimental data from various authors cited in
[14], pp. 49-51.

For practical applications, it is particularly important to cal-
culate the diffusivities of species in systems containing tran-
sition metals, which show appreciable complexation. For
systems with aqueous complexes, the measured diffusion
coefficients should usually be regarded as weighted aver-
ages of diffusion coefficients for individual (simple and com-
plexed) species. As derived in a previous paper [9], the
aggregate diffusivity of a species that undergoes complexa-
tion (denoted by X) is related to the diffusivities of individual
complexes QiXi by
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The derivative in eq. (7) can be computed using a thermo-
dynamic speciation model. In this study, we use the model
developed by OLI Systems [12-13]. Figure 7 shows the ef-
fects of both weak and strong complexation on the aggre-
gate diffusivity of iodide ions in several aqueous solutions. In
the case of the HI and NaCl solutions, the self-diffusivity of
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Figure 6: Self-Diffusion Coefficients of Na+ and H2O at
298.15 K in the NaCl + MgCl2 + H2O System.
The lines have been obtained for various
NaCl/MgCl2 ratios. The data were taken from the
compilation [14], pp. 266-267.

Figure 7: Aggregate Self-Diffusion Coefficients for Iodide-
Containing Species in Aqueous Solutions of HI,
NaCl, Ca(ClO4)2 and Cd(ClO4)2.
The lines have been obtained from the model.
Experimental data were taken from various
authors cited in [14].

Figure 8: Diffusion Coefficients of Oxygen in KCl (upper
line), LiCl (center line) and MgCl2 (lower line)
Solutions.
The lines have been obtained from the model
and the symbols represent experimental data of
Ikeuchi et al. [15].

Figure 9: Specific Conductivity for Concentrated
Electrolytes.
The data for NH4NO3 and AgNO3 are from
Campbell and Kartzmark (1952) and the data for
HNO3, HCOOK and CdCl2 are from Haase et al.
(1965), Isono (1985) and McQuillan (1974),
respectively (all cited by Lobo and Quaresma in
[16]).

iodide ions in several aqueous solutions moderately de-
creases with concentration. For the Ca(ClO4)2 solution, the
initial decrease of DT with concentration is stronger than in
the case of NaCl be cause the relaxation effect in 2:1 elec-
trolytes is stronger than in 1:1 electrolytes. Finally, DT in the
Cd(ClO4)2 solution decreases very rapidly at low concentra-
tions because of strong complexation between Cd and I.
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The diffusivity model is also applicable to the diffusion of
neutral molecules (e.g., gases) in electrolyte solutions. For
example, Figure 8 shows the diffusivity of oxygen in three
chloride solutions with different cations.

Figure 10: Equivalent Conductivity of the Ternary System
KCl + NaCl + H2O at 298.15 K for Various Molar
Ratios of KCl to NaCl.
The solid lines have been calculated using the
effective ion radii. The dotted lines have been
obtained using crystallographic radii.

The results obtained from the electrical conductivity model
are compared with experimental data in Figures 9 and 10.
Figure 9 shows specific conductivities as functions of con-
centration for systems for which experimental data extend
over wide concentration ranges (up to 30 mol/kg H2O). The
specific conductivities exhibit maxima followed by a slow,
nonasymptotic decrease of κ versus m. The location of the
maximum and the shape of the κ versus m curve is charac-
teristic for each solution. The parameters regressed from
binary data have then been used to predict the conductivity
for ternary or quaternary systems. In general, the quality of
predicting the conductivity for multicomponent systems is
similar to the quality of reproducing the data for the binary
subsystems. This is shown in Figure 10 for the system
KCl + NaCl + H2O. Figure 10 also shows the prediction of
conductivity without any empirical parameters, i.e., with the
ionic radii equal to the crystalline radii (dotted lines). Such a
prediction is in reasonable agreement with experiments for
1:1 electrolytes for concentrations up to ca. 1 mol/dm3. Be-
yond this concentration limit, it is necessary to utilize the
effective, ionic strength-dependent radii (solid lines).

Figures 11 and 12 show the results of computations using
the viscosity model. Fig. 11 shows the results for both strong
and weak 1:1 electrolytes. It is noteworthy that the viscosity
of strong electrolytes rapidly increases with concentration
whereas that of weak electrolytes slowly increases or de-
creases. The behavior of weak electrolytes, such as acetic

acid or HCN, is similar to the behavior of nonelectrolyte
solutions. Figure 12 shows the results for 2:1 electrolytes. In
general, the viscosity of 2:1 electrolytes rises more rapidly
with concentration than that of 1:1 electrolytes.

Figure 11: Representation of Viscosity for Strong and Weak
1:1 Electrolytes at 298.15 K.
The symbols denote experimental data [16] and
the lines have been calculated using the model.

Figure 12: Representation of Viscosity for 2:1 Electrolytes
at 298.15 K.
The symbols denote experimental data [16] and
the lines have been calculated using the model.
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CONCLUSIONS
Models have been established for the computation of sev-
eral transport properties (i.e., self-diffusivity, electrical con-
ductivity and viscosity) of multicomponent aqueous solu-
tions. The models share a number of features that make
them applicable over wide ranges of temperatures and con-
centrations, i.e.,
• At infinite dilution, the models reproduce the temperature

dependence of single-ion properties (i.e., the limiting
conductivities/diffusivities and viscosity Bvis coefficients).
This is accomplished by establishing relationships
between these properties and thermodynamic functions
of hydration.

• For finite concentrations, the models reproduce the
contributions of electrostatic and nonelectrostatic
interactions to the concentration dependence of transport
properties.

• The models contain mixing rules that make it possible to
predict the properties of multicomponent systems using
parameters developed for simple binary systems.

• The models are combined with a thermodynamic
speciation model, which makes it possible to reproduce
the effects of complexation or other reactions in solution.
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