

think simulation

getting the chemistry right

OLI Corrosion Modeling Basics

using OLI Studio: Corrosion Analyzer

August 10 and 12, 2020

Disclaimer

• The simulation results used for this presentation were obtained using OLI Studio V10

• If you are using an older version, you may obtain slightly different results.

- This CMB course is open forum.
 - Feel free to share any information, but be aware that this session is being recorded and content may be shared with others outside this course.

Course Objectives

At the end of this course you will be able to:

- 1. Discuss general OLI Studio: Stream Analyzer and Corrosion Analyzer features
- 2. Choose appropriate thermodynamic models for your chemistry
- 3. Review major types of calculations
 - The different types of corrosion calculations
 - Corrosion rates
 - Propensity to localized corrosion
 - Pourbaix diagrams
 - How to enter your own data (stream or water analysis) to accurately represent corrosive conditions
 - How to interpret your results
- 4. Formulate and build your own applications and interpret the data presented in reports and plots

Welcome to the Class!

- Training for OLI Studio: Corrosion Analyzer
- Two sessions:
 - Day 1 3 hours
 - Day 2 3 hours
- In each session:
 - Work 53-55 min and take a 5-7 min break
- If needed: Split your monitor to see presentation and work on the software at the same time.
 - Windows key + left or right

Materials

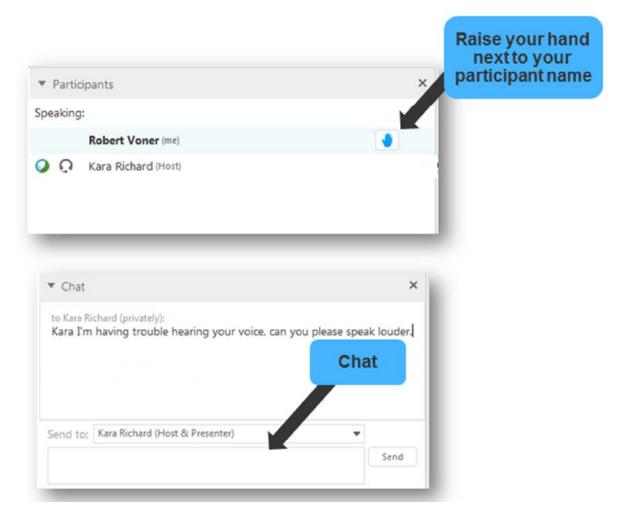
Software

- You should have received a trial Serial Number giving you access to the Stream Analyzer and Corrosion Analyzer Tools.
- Is the OLI Software installed? Please let me know, so that we can help you.

- Manual
 - During the training we will walk through the essence of the chapters.
 - You should have access to the manual, which will serve as a resource to study from.
 - The manual case files and the case files completed during the course will be provided.

Virtual Etiquette

- Inform the instructor if you:
 - Have technical issues
 - Leave the course for a moment
- Mute Mobile Devices


- Actively participate
 - Feel free to interrupt if you have any questions

WebEx Tools

- Raise your hand next to your participant name
- Use your chat to ask any questions
- Unmute and ask your question

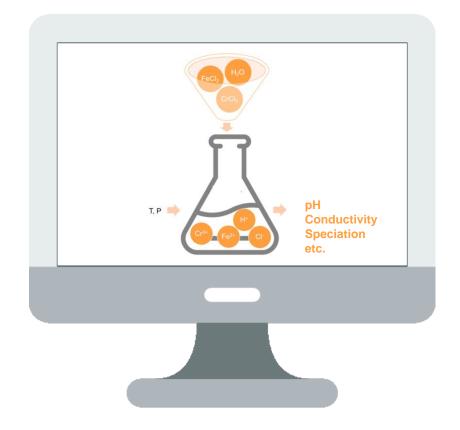
Certificate of Completion!

• Complete our course survey.

OLI Studio

Stream Analyzer

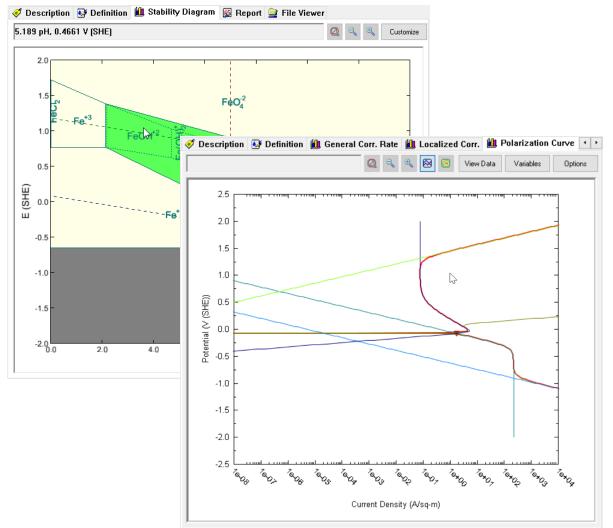
ScaleChem


Corrosion Analyzer

OLI Studio: Stream Analyzer Overview

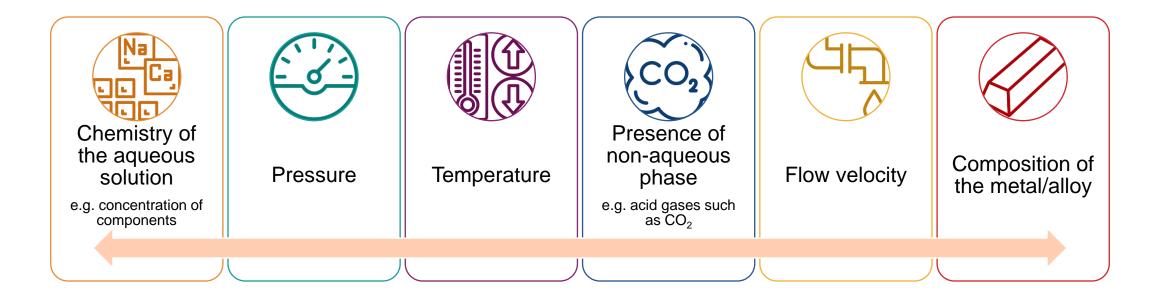
Stream Analyzer is a comprehensive thermodynamic tool that calculates:

Speciation, Phase equilibria, Enthalpies, Heat capacities, Densities, etc., in mixed-solvent multicomponent systems


Capabilities and features of Stream Analyzer include:

- Three different thermodynamic frameworks:
 - Aqueous (AQ) model
 - Mixed Solvent Electrolyte (MSE) model
 - Mixed Solvent Electrolyte and Soave-Redlich-Kwong (MSE-SRK) model
- **Thermophysical properties:** Stream Analyzer has thermophysical models to predict surface tension, interfacial tension, viscosity, electrical conductivity, thermal conductivity, diffusivity, and osmotic pressure.
- **Molecular and ionic inflows:** Stream Analyzer accepts molecular inflows typical of a process stream; and ion inflows typical of a sample water analysis.

OLI Studio: Corrosion Analyzer Overview corrosion


Capabilities and features of Corrosion Analyzer are:

- ✓ Calculation of general corrosion rates
- Localized corrosion susceptibility calculating the worst-case pitting rate
- ✓ Generation of polarization curves plots
- ✓ Generation of **Pourbaix (E vs pH) diagrams**
- ✓ Heat treatment effect

Introduction to the OLI Corrosion Model

Corrosion rates in aqueous environments depend on multiple factors, such as:

To get an understanding of each one of these factors, or a combination of these factors, computational modeling is **advantageous**.

The strength of the OLI corrosion model is the ability to provide a realistic representation of **chemical equilibria** and **thermophysical properties** in the bulk solution, and at the same time, to account for the phenomena at the **metal-solution interface**.

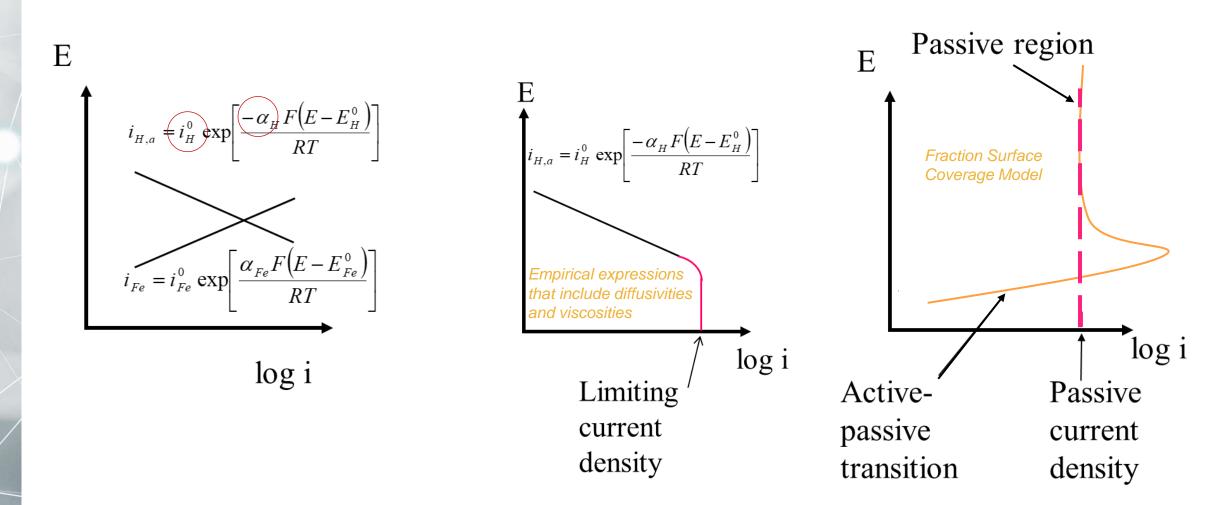
Introduction to the OLI Corrosion Model

Thermophysical module

- Computes **the speciation** of species in aqueous solutions, e.g. $CO_2 + H_2O \rightarrow H^+ + HCO_3^-$
- Calculates the concentrations and activities of ionic species and neutral species in aqueous solutions
- Calculates transport properties of individual species, such as viscosity and diffusivity, to predict masstransfer effects

Thermodynamic Framework Aqueous (AQ)* model

Electrochemical module


- Simulates partial oxidation and reduction processes on the surface of the metal
- Reproduce the active-to-passive transition and effect of solution species on passivity
- Reproduce experimental corrosion rates using parameters calibrated using experimental data
- The prediction of corrosion potential and corrosion rates involves 3 aspects of **Corrosion Kinetics**:
 - Chemical Kinetics Activation control model
 - Mass Transfer Diffusion control model
 - Passivity Fraction surface coverage model

Prediction of corrosion rates

1. Activation Control

2. Diffusion Control

3. Passivity

User Interface

OLI Studio Desktop: User Interface

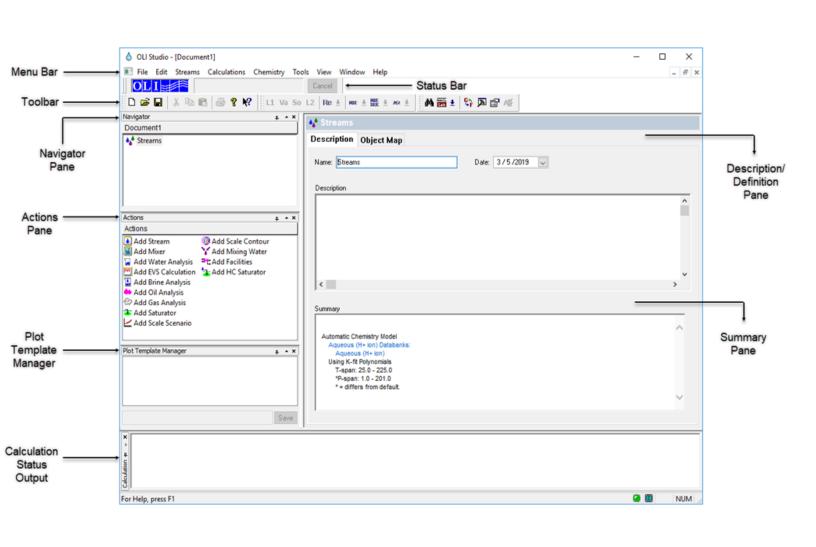
Navigator Panel

- Open files and add additional files
- Drag calculations from one document to another
- Add objects here from the Actions Panel

Actions Panel

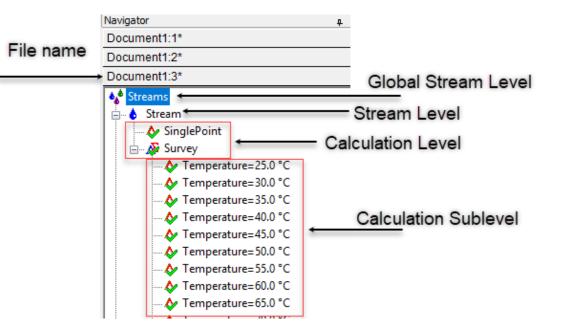
- View objects present in the actions panel
- View objects that are installed with the software depends on the add-ons that have been installed
- See different view options use the view list to make it easier to find objects

Tool bar


- Quickly access different functions
- Select (or Turn ON) tools (they will be highlighted in blue when selected)

Plot template manager

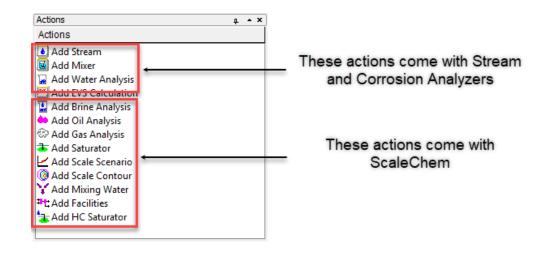
Save commonly used plots


Calculation outputs

- Receive warnings or Calculation failures, including notice of the potential problem causing the calculation to fail
- · Read and understand the cause of the error

Navigator Panel

- The Navigator Panel (or tree level) contains the list of streams and calculations that are active within a file.
- There are four levels:
 - Global Stream Level: Provides the broadest view of the navigator objects. At this level, the user can define default units, default component names, and general preferred calculation options.
 - Stream Level: Chemistry options such as phase selection, REDOX reactions, and thermodynamic databanks can be selected as this level.
 - Calculation Level: Calculation types such as Single point calculations, Survey calculations, etc., are subordinate to streams, and appear in this level.
 - Calculation Sublevel: Some calculations, such as Survey calculations, have their own calculation sublevels. They can be expanded or minimized using the small icon (+ or -) next to the calculation type.



Actions Pane

This view contains selectable action icons.

Each icon represents either a new stream input or new calculation. You can show the icons as a List, as Small Icons or as Large Icons. **To change the view:** Right click on the white space > Select List

When located at the **Global Stream Level** the following action icons appear on the Actions Pane:

If you select an action item that belongs to Stream Analyzer, this action item will be located at the **Stream Level**, and only the following action icons appear on the Actions Pane:

Р	*	x

If you select an action item that belongs to ScaleChem, this action item will be located at the **Stream Level**, and only the following action icons appear on the Actions pane:

Actions	
Actions	
🔛 Add Brine Analysis	
🍋 Add Oil Analysis	
Add Gas Analysis	
Add Saturator	
🖌 Add Scale Scenario	
🔞 Add Scale Contour	
¥ Add Mixing Water	
L Add Facilities	
🔁 Add HC Saturator	

Tool Bar

In the **Chemistry** quick access tool bar, you will find: Phases, Redox and Databanks.

Phases: Turns ON/OFF specific phases. Four different phases are available:

- L1: Aqueous electrolyte rich phase, also referred to as Liquid 1 phase. Va: Vapor phase
- So: Solid phase
- L2: Usually organic rich phase, also referred to as Liquid 2 phase.

Redox: Denoted as **Re**. Turns ON/OFF Reduction/Oxidation (REDOX) reactions.

Databanks: Turn ON/OFF a specific thermodynamic databank. There are three thermodynamic databanks available:

AQ: Aqueous databank

MSE: Mixed Solvent Electrolyte databank

MSE-SRK: Mixed Solvent Electrolyte and Soave-Redlich-Kwong databank

Component search

This tool helps you to look for a component using Formula, CAS number, or the periodic table.

Names manager

This tool allows to change the way component name will appear in tables and reports. The style options are: Display name, Formula and OLI Name.

Units manager

This tool allows you to select or change to preferred units for all calculations.

Customize toolbars 🔊

This tool allows you to remove or add preferred tools to the Tool Bar. For example, you can add or remove Chemistry from the Tool Bar.

General options

This tool allows you to adjust or change default software settings.

Calculation options

This tools allows you to include or exclude different types of properties in the calculations.

The Three Different Thermodynamic Frameworks

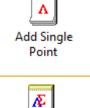
When to use which thermodynamic framework?

General rules:

- AQ (Aqueous Framework): ≥ 70% of the stream is aqueous (diluted solutions)
- MSE (Mixed Solvent Electrolyte Framework): There is no limit for the aqueous composition preferred for most chemistries. Water does not need to be the dominant component.
- MSE-SRK (Mixed Solvent Electrolyte and Soave Redlich Kwong Framework): Upstream oil and gas applications containing light hydrocarbons and CO₂, that require high pressures (P> 80 atm)

Calculation types

Hassium Meitnerium Darmstadium Roentgenium Copernicium


Calculation types

For all calculations we will create one or more objects, referred to as a **Streams**, which are used to define Add Stream a particular chemistry, temperature, and pressure.

Water Analysis allows you to enter ionic inflows, i.e. anions and cations, and offers reconciliation options.

There are four different types of calculations that can be carried out in OLI Studio Stream Analyzer:

Add Survey

Single Point Calculations are used to find information (pH, volume, speciation, etc.) at one specific equilibrium state.

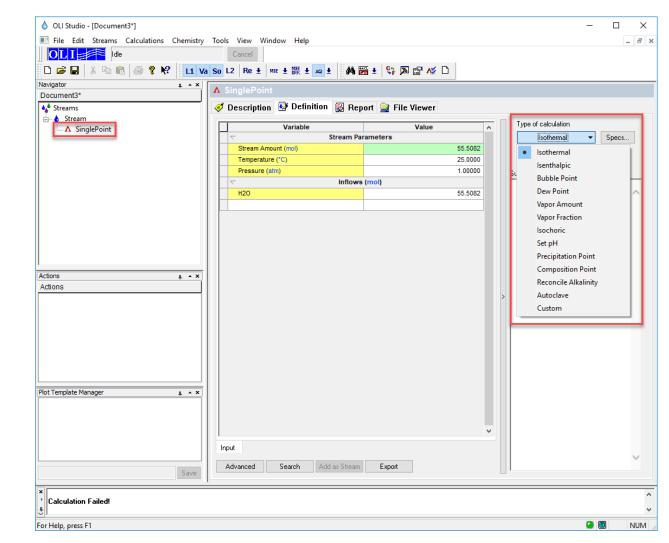
Survey Calculations are useful for plotting changes in stream parameters against temperature, pressure, or composition.

Add Mixer	Mixer Calculations are useful for mixing different streams, and offers four different mixing options, Single Point Mix, Multiplier, Ratio, and Volume.
Add	Chemical Diagram Calculations allow you to create
Chemical	a stability map for species based on concentration
Diagram	and other parameters such as pH.

There are two different types of calculations that can be carried out in OLI Studio Corrosion Analyzer:

Add Stability Diagram

Stability (Pourbaix) Diagrams allows you to map out the conditions of potential and pH where different redox species are stable.


Corrosion rates allows you to calculate the rate at which any given metal deteriorates in a specific environment.

Single Point Calculations

Single Point Calculations

- Single point calculations are the simplest set of calculations in the software.
- There are 13 different single-point calculation types:
 - 1. Isothermal
 - 2. Bubble point
 - 3. Dew point
 - 4. Vapor Fraction
 - 5. Precipitation Point
 - 6. Set pH
 - 7. Reconcile Alkalinity
 - 8. Autoclave

Single Point Calculation Types – Definitions

For future reference

1. Isothermal The software computes solution properties based on a known composition, at a constant temperature ar	nd pressure.
--	--------------

- 2. *Isenthalpic* A constant heat loss/gain is applied to the calculation and temperature or pressure is adjusted to meet the heat content.
- 3. Bubble Point The temperature or pressure is adjusted to reach a condition where a small amount of vapor begins to appear.
- *4. Dew Point* The temperature or pressure is adjusted to reach a condition where a small amount of aqueous liquid appears.
- 5. Vapor Amount The temperature or pressure is adjusted to produce a user-specified amount of vapor.
- 6. Vapor Fraction The temperature or pressure is adjusted to produce a user-specified amount of vapor as a fraction of the total quantity.
- 7. *Isochoric* The temperature or pressure is adjusted to produce the user-specified total volume.
- 8. Set pH The software adjusts the flowrate of an acid or basic titrant to maintain an aqueous solution at a user-specified pH.
- **9.** *Precipitation Point* The software adjusts the flowrate of a species until a small amount of solid precipitates.
- **10. Composition Point** The composition point calculation is used to fix a species value. The software adjusts the flowrate of a species until it reaches the user-specified/fixed species value.
- **11. Reconcile Alkalinity** The software reconciles the alkalinity of a solution by adjusting the flowrate of species.
- **12. Autoclave** The software uses an isochoric (constant volume) calculation in which mass, pressure and temperature are allowed to vary. This simulates a closed pressure vessel. You may have to enable this calculation from Tools | Options | Enable Features Under Development
- **13. Custom** With the calculations stated so far, variables are predefined. For instance, we must select either temperature or pressure as a variable in the dew point calculation. With **Custom** single point calculations, we can manipulate a wider variety of variables.

Example – Isothermal Calculation

- ✓ Add Stream
 - Click on the object "Add stream" icon
 - or go to the Menu bar Click on Streams >Add Stream
- ✓ Change the name to: **Isothermal**
 - Use <F2> key
 - or double click
 - or right click
 - or use the Description Tab
- ✓ Go to **Definition** Tab
 - Stream parameters
 - Stream amount size of the stream
 - Temperature and Pressure
- ✓ Inflows
 - Moles are the default units for all calculations

Before entering your chemistry make sure to set up **Units**, **Thermodynamic Framework**, and **Name Display** (optional).

- ✓ Entering your chemistry
 - Fe
 - Enter the value 1 (This will create a 1 m Fe in solution)

- ✓ Stream amount
 - 56.5082 moles (calculated)
 - Note: Color code for cells
 - Yellow cells: not editable
 - White cells: editable
 - **Green cells:** will be calculated automatically (but can be overwritten manually)
- ✓ Click on Add Calculation (or click on the icon in the action panel)
 - Select Single Point
 - By default the Isothermal calculation is selected
 - Notice the changes from stream to single point calculation
- ✓ Rename the new Single point as 1 m Fe
- ✓ Click on the Calculate button
- ✓ Save your file (File >Save as...)
- ✓ Check the **Report** to understand the results

Example – Isothermal Calculation 1 m Fe in water

- Summary Box
- Output Tab
- Right click > Sections > Additional Stream Parameters

Variable		Value	^	Type of calculation
-	Stream	n Parameters		Isothermal
Stream Amount (mol)		63.5082		
 Moles (True) - Aqueous (mol) 		67.8110		Cal
 Moles (True) - Solid (mol) 		1.84865		Summary
Temperature (°C)		25.0000		
Pressure (atm)		1.00000		Unit Set: Metric (m
	Infl	ows (mol)		Automatic Chemis
H2O		55.5082		Aqueous (H+ io
NaCl		8.00000		Aqueous (H+ Using K-fit Poly
	Additional S	tream Parameters		T-span: 25.0
Density - Aqueous (g/ml)		1.20140		P-span: 1.0 -
Density - Solid (g/ml)		2.16375		Isothermal Calcula
Density - Total (g/ml)		1.24207		25.0000 °C 1.0000
Ionic Strength (m-based) - Aqueou:		6.15135		Phase Amounts Aqueous 67.8
Ionic Strength (x-based) - Aqueous	(mol/mol)	0.0907133		Vapor 0.0
pH		6.94525		Solid 1.8
Standard Liquid Volume - Aqueous	(L)	1.22029		Aqueous Phase P
Standard Liquid Volume - Solid (L)		0.0653216		pH 6.945
				lonic Strength Density 1.201
Units Manager				Densky 1.201
Save default layout				Calc. elapsed time
				Calculation comple
Generate Model				
✓ Hide Zero Values				
Sections	> 🗸 S	itream Parameters		
	- v c	Calculation Results		
	~ h	nflows		
		Related Inflows	~	
			-	
Output		Additional Stream Parameters		
		Phase Flow Properties		
vanced Search Addias	Strea T	hermodynamic Properties		1

Type of cal	culation	
Isot	hermal 🔹 🔻	Specs
	Calc <u>u</u> late 🥝	
Summary		<u> </u>
Unit Set: Me	etric (moles)	
Aqueous Aqueo Using K- T-spar	Chemistry Model (H+ ion) Databan pus (H+ ion) fit Polynomials n: 25.0 - 225.0 n: 1.0 - 1500.0	ks:
Isothermal 25.0000 °C	Calculation 1.00000 atm	
Phase Amo Aqueous Vapor Solid	unts 67.8110 mol 0.0 mol 1.84865 mol	
pH Ionic Stre	hase Properties 6.94525 ength 0.0907133 1.20140 g/ml	i mol/mol
Calc. elaps	ed time: 0.031 sec	
Calculation	complete	

- Report tab
- Customize button: Add more tables that are not default

np to: Stream P	arameters	\sim			Q Q 4	Customize Expo
Stream P	arameters					
Total and Scaling T Species (Row Filt, Element B	l Phase Flows (Amounts 'endencies Dutput (True Species) Balance)				
column Filter Applie	d: Only Non Zero Values					
Mixture Propert						
Stream Amou	nt	63.5082	mol			
Temperature		25.0000	°C			
Pressure		1.00000	atm			
Aqueous Prope	erties					
pH		6.94525				
lonic Strength		0.0907133	mol/mol			
Ionic Strength		6.15135	mol/kg			
Osmotic Pres	sure	403.680	atm			
Specific Electr	rical Conductivity	2.55539e5	µmho/cm			
Electrical Con	ductivity, molar	3.61461e-3	m2/ohm-mol			
Viscosity, abs	olute	1.76985	cP			
Viscosity, rela	tive	1.98699				
Standard Liqu	id Volume	1.22029	L			
Volume, Std. C	Conditions	1.13160	L			
Solid Properties	-					
Standard Liqui	id Volume	0.0653216	L			
Stanuaru Liqu						
Thermodynami	Unit g/ml	Total 1.24207	Aqueous 1.20140	Solid 2.16375		

RedOx Reactions

Hassium Meitnerium Darmstadium Roentgenium Copernicium

Redox reactions

a.k.a. Half reactions

A **RedOx** (or reduction-oxidation) reaction is a type of chemical reaction that involves a transfer of electrons between two species (electrochemical reactions).

We can tell there has been a transfer of electrons if there is any change in the oxidation number between the reactants and the products.

Example: Fe in am oxygen-free environment:

 $Fe_{(s)} \rightarrow Fe_{(aq)}^{2+} + 2\overline{e}$ $2H_{(aq)}^{+} + \overline{2e} \rightarrow H_{2(g)}$

$$Fe_{(s)} + 2H^{+}_{(aq)} \rightarrow Fe^{2+}_{(aq)} + H_{2(g)}$$

Oxidation: Al lost electrons Reduction: H gained electrons

- In the software the RedOx reactions are turned OFF by default. The software assumes that there is not RedOx happening.
- To enable RedOx reactions we need to click on the Re button.

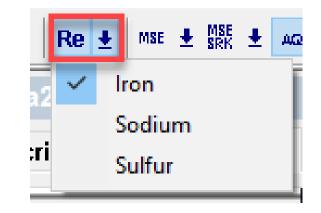
• Note: Only transition metals are turned ON.

Example – Redox 1 m Fe in water

- 1. Go to the **Add Calculation** button and select **Single Point** calculation
- 2. Select **Isothermal** Calculation
 - Rename it Fe Oxidation
- 3. Turn on **Redox** (Re button)
 - Or Chemistry>Model Options > RedOx
- 4. Click Calculate
- 5. Go to the **Report** tab

Electrochemical Reaction

$$Fe_{(s)} + 2H^{+}_{(aq)} \rightarrow Fe^{2+}_{(aq)} + H_{2(g)}$$


Hydrolysis and Precipitation Reactions

 $Fe_{(aq)}^{2+} + 2H_2O \rightarrow Fe(OH)_2 \downarrow + 2H^+$

Example – Redox Fe – Na₂S system [No Transition Metals]

Note: By default only the transition metals are turned ON. Not all the oxidation states for RedOx reactions are allowed.

- Go to the Add Calculation button and select Single Point calculation
- Select Isothermal Calculation
 - Rename it Fe Na2S
- Add
 - Na2S 0.1 moles
 - Turn on Redox Reactions and check the drop-down arrow
- Click Calculate
- Go to the Report tab
- Re-run the case with Redox ON for Sulfur (optional)

Periodic table of the elements

group 1*				netals e-earth ion met				ses h eleme	ents (21,								18
1 H 3	2	_	Other r Other r	netals nonmet	als		ctinoid		lements ts	(57-71	oniy)	13 5	14 6	15 7	16 8	17 9	2 He 10
Li 11 Na	Be 12 Mg	3	4	5	6	7	8	9	10	11	12	8 13 Al	C 14 Si	N 15 P	0 16 S	F 17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
lanthai	noid se	ries 6	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	1
acti	noid se	ries 7	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Some calculations

Example – Dew Point

Sour Natural Gas

- ✓ Add a new Stream
- ✓ Rename it *Dew Point*
- ✓ Select the MSE Framework
- ✓ Click on the Units Manager Icon
 - Select Metric | Batch | Mole Frac.
- ✓ Set
 - Stream Amount = 100 moles
 - T = 120 C
 - P = 1 atm
- ✓ Add Inflows
 - H2O (calculated)
 - CH4 94 mole %
 - CO2 3 mole %
 - H2S 1 mole %

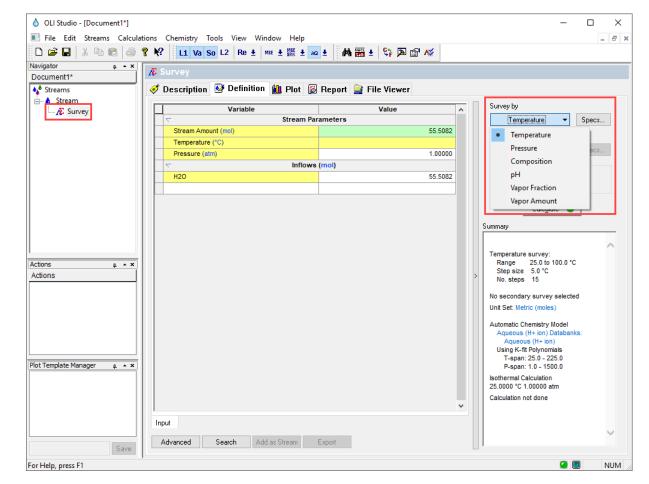
- ✓ Go to the **Add Calculation** button
 - Select Single Point calculation
- ✓ Select **Dew point** as Type of Calculation
 - Name it **DPT**
- ✓ Click the Calculate, and see Results
- ✓ Repeat the same example to calculate the DPP
 - Copy and paste the previous single point calc.

Example – Set pH

Neutralizing Acetic Acid

- ✓ Add a new Stream
- ✓ Rename it Set pH
- ✓ Select the MSE Framework
- ✓ Add Acetic Acid 1 mol
 - The software will change it to CH3COOH, since Formula is the default display name style
- ✓ Go to the Add Calculation button and select Single Point calculation
- ✓ Select Isothermal as Type of Calculation
 - Name it Acetic Acid Isothermal
 - Check the pH

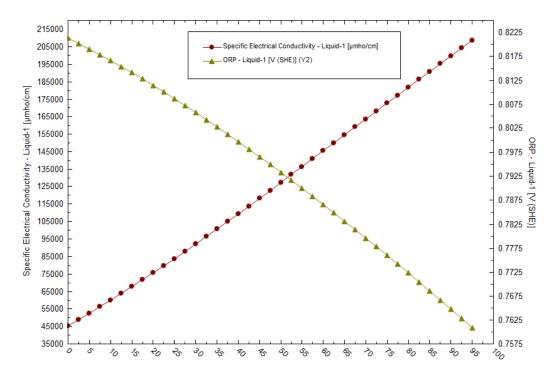
- ✓ Add another **Single Point** calculation
- ✓ Select set pH as Type of Calculation
 - Name it Acetic Acid Neutralized
- ✓ Target pH = 7.0
- ✓ Click the Calculate
- ✓ Results
 - 0.99 moles were needed to neutralized 1 mol of Acetic Acid.


Survey Calculations

Survey Calculations

Survey calculations are single point calculations strung together in series. They are also referred to as multiple point calculations.

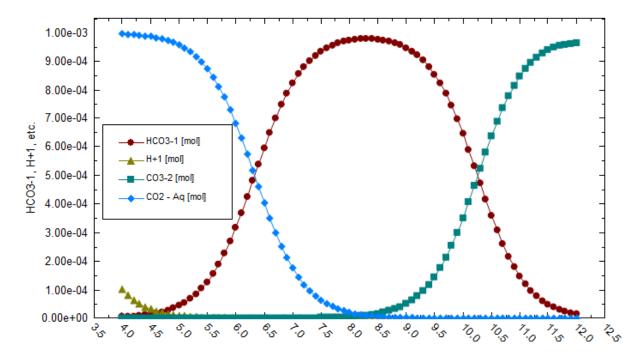
There are three different ways to set up surveys:


- <u>Single Survey</u>: These calculations allow the user to designate one independent variable.
 - The predefined single surveys are by: Temperature, Pressure, Composition, pH, Vapor Fraction, and Vapor Amount.
- <u>Dual Survey</u>: These calculations allow the user to designate two independent variables, e.g. Temperature and Pressure
- Survey by changing the single point calculation type: By default, the isothermal calculation is selected for survey calculations. If the user wants to study the solubility of a salt in solution, it is possible to change the survey from **Isothermal** to the **Precipitation Point** calculation type.

Electrical Conductivity and the ORP* of a 1 m NaCl solution vs T

- ✓ Add a new Stream
- ✓ Rename it NaCl solution Surveys
- ✓ Select the **MSE** Framework
- ✓ **Units**: Metric-Batch-Conc.
- ✓ Inflows
 - H2O Calculated
 - NaCl 58500 mg/L
 - O2 8 mg/L
- ✓ Go to the Add Calculation button and select Survey calculation
- ✓ Select Survey by **Temperature**
 - Name it Elec. Conductivity and ORP vs T
 - Select the Re button this will enable to study the ORP
- ✓ Go to the **Specs...** button
 - Temperature Range: 0-95 °C with increments of 2.5 °C
- ✓ Click the Calculate, and see the Plot Tab

- ✓ Click on the **variables** button
 - Thermodynamic Properties > Specific Electrical Conductivity (Y1-Axis)
 - Additional Stream Parameters > ORP (Y2- Axis)


*ORP = Oxidation Reduction Potential of the solution

Example – pH Survey The Carbonic system as a function of pH

- ✓ Add a new Stream
- ✓ Rename it *pH Survey*
- ✓ Select the AQ Framework
- ✓ Units: Metric-Batch-Moles
- ✓ Inflows
 - CO2 0.001 moles
- ✓ Go to the Add Calculation button and select Survey calculation
- ✓ Select Survey by **pH** as the Survey type
 - Change the name to carbonic system
- ✓ Go to the **Specs...** button
 - Default titrants are HCI and NaOH (leave defaults)
 - pH Range: 4-12 with increments of 0.1
- ✓ Click the Calculate, and see the Plot Tab

✓ Go to the **Variables** button

• Species of Interest are: CO2-Aq, HCO3-1, CO3-2, and H+

Target pH

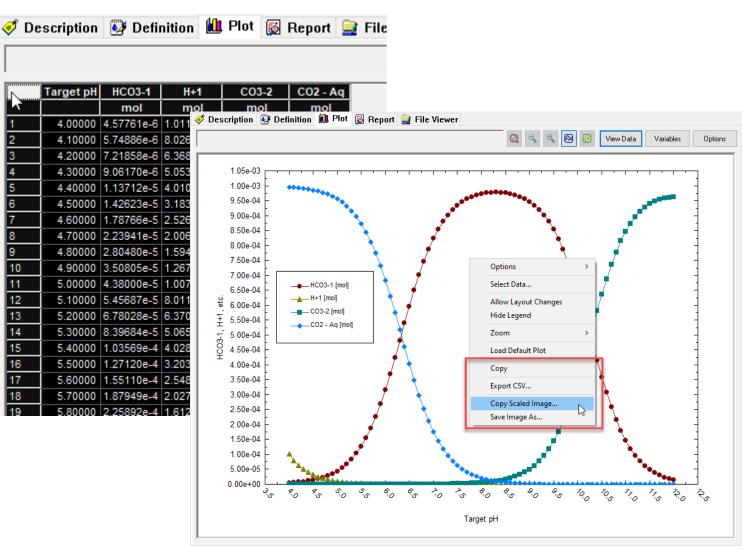
Exporting Data and Image

10

11

12

13


14

15

16

17

- ✓ Exporting/Copying Data/Image options:
 - Ctrl+C and Crtl+V •
 - Or Right-Click mouse and select copy ٠
 - Or Right-Click mouse and select • **Export CSV**
 - Or Click on the View Data button and • then Ctrl+C and Crtl+V
 - Right-Click mouse and select Copy • **Scaled Image**

Corrosion Rate Calculations AQ – framework only

Example – Corrosion Rates Corrosion Rate of Carbon Steel 1018

- ✓ Add a new Stream
 - Rename it Corrosion Rates
- ✓ Select the AQ Framework
- ✓ Change the **units** to Metric | Batch | Mass Frac.
 - Change the corrosion rate units to mil/yr
- ✓ Inflows
 - H2O Calculated
 - NaCl 3.5 wt%
 - O2 8e-4 wt%
- ✓ Go to the Add Calculation button and select Corrosion Rates Calculation – notice that the Redox button is turned ON
 - Select Single Point Rate
 - Rename it CS-1018
- ✓ Select Carbon Steel 1018 as the contact surface
- ✓ Click Calculate and Analyze the Result

omposition	Parameters	Corrosion				
		Variable			Units	
Angular V					cle/min	
Corrosion					l/yr	5
	Current Densi	ty			m/yr	
Length/Dia Potential	ameter				n/yr I/yr	
Shear Stre				Pa		
	c Pipe Flow				3/s	
Velocity	or ipe riow					
	lio: Corrosi	on Analyzer	reports the c	m/ orrosion r		
OLI Stud ollowing mm/yr = µm/yr =	units: millimeters micromete	s per year = rs per year =	reports the c 10 ⁻³ m /year = 10 ⁻⁶ m /yea	orrosion r		r

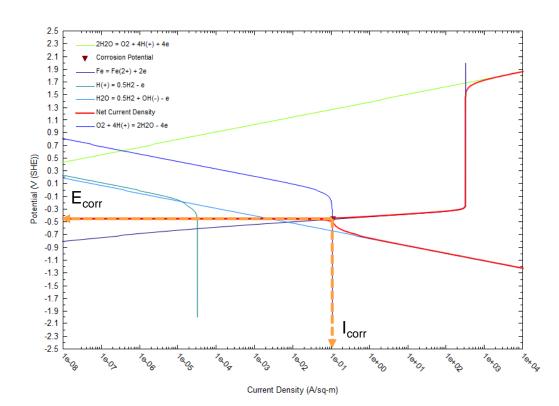
Example – Corrosion Rates Results - Overview

General corrosion rate

	Temperature	Corrosion Rate	pН	
	°C	mil/yr		
1	25.0000	5.04952	6.99032	

Localized Corrosion

		Corrosion Potential	Repassivation Potential	Maximum Pit Current Density
	°C	V (SHE)	V (SHE)	A/sq-m
1	25.0000	-0.459350	-0.499125	0.0470029


If Ecorr > Erep localized corrosion is predicted

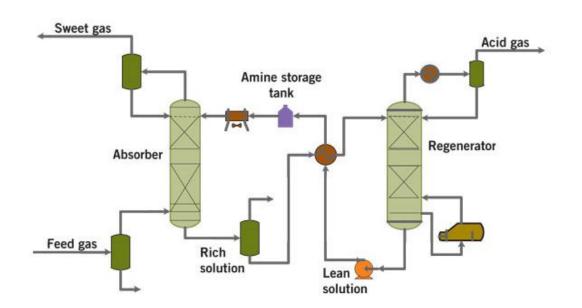
Ecorr = Corrosion Potential

Erep = Repassivation Potential

Maximum Pit Current Density = The worst-case pitting rate

Polarization Curve

Corrosion Rates and Polarization Curves


Gas Condensate Corrosion

Gas condensates from alkanolamine gas sweetening plants can be highly corrosive.

Diethanolamine is used to neutralize (sweeten) a natural gas stream. This removes carbon dioxide and hydrogen sulfide. The off gas (acid gas) from the regeneration is highly acidic and corrosive.

The Corrosion Analyzer will be used to:

- ✓ Determine the **dew point** of the acid gas
- Remove the condensed phase and perform corrosion rate calculations

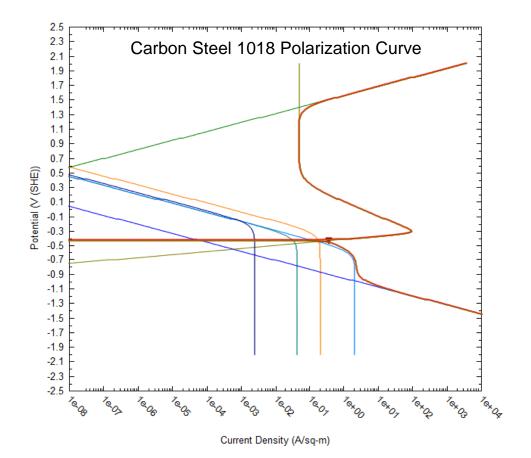
Example – Corrosion Rates Calculating the Dew Point Temperature

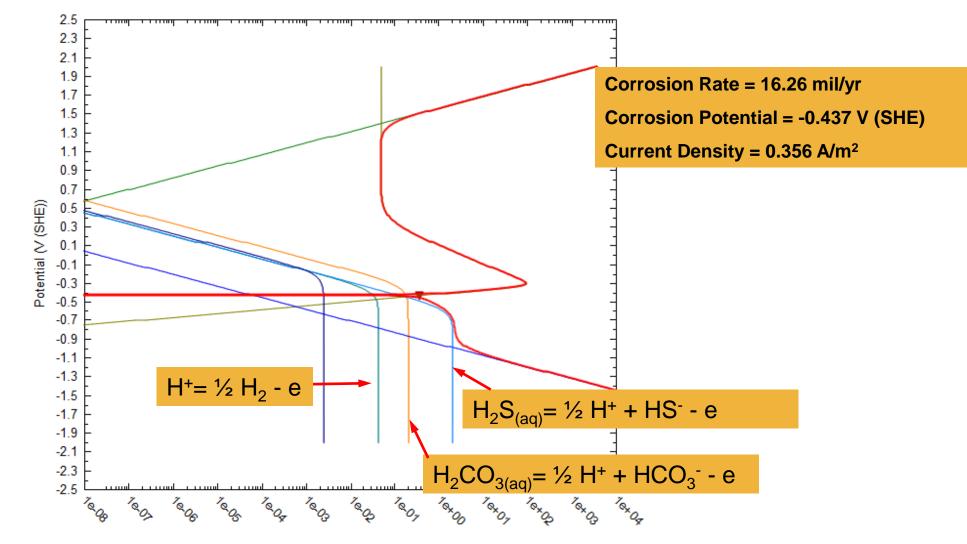
✓ Add a new Stream

- Rename it Acid Gas
- ✓ Select the **AQ** Framework
- ✓ Change the **units** to Metric | Batch | Mole Frac.
 - Change the corrosion rate units to **mil/year**
- $\checkmark\,$ Add the chemistry in the table to the right $\rightarrow\,$
- ✓ Go to the Add Calculation button and select Single Point Calculation
 - Select Isothermal, rename it Isothermal_1
 - Select Dew Point, rename it Dew Point T
- ✓ Click Calculate
- ✓ Go to the **Report** tab

Conditions and composition of Acid Gas

Temperature	38 °C
Pressure	1.2 atm


Species	Concentration (mole %)
H ₂ O	5.42 (Calculated)
CO ₂	77.4
N ₂	0.02
H ₂ S	16.6
CH4	0.50
C2H6	0.03
C3H8	0.03


Example – Corrosion Rates

Calculating the Corrosion Rates of Carbon Steel 1018 and 13% Cr

- ✓ Select the Dew Point T Calculation
- ✓ Right click on it and Add as Stream
 - Name it: Gas Condensate
 - Select the aqueous phase only
- ✓ Go to the Add Calculation button and select Corrosion Rates
 - Select Single Point Rate
 - Name it: CS 1018 CR
- ✓ Flow Type: Static
- ✓ Select Carbon Steel 1018 as the Contact Surface
- ✓ Click Calculate
- ✓ Go to the General Corrosion tab and Polarization Curve tab
- ✓ Do the same for 13%Cr Stainless Steel

Carbon Steel 1018 Corrosion @ Dew Point

Current Density (A/sq-m)

13 % Cr Steel Corrosion @ Dew Point Systems, inc.

Current Density (A/sq-m)

Example – Corrosion Rates Neutralizing with an amine (DEA)

✓ Select the Acid Gas Stream

- ✓ Add a **Single point** calculation
 - ✓ Change it to Set pH
 - ✓ Rename it: *Neutralizing with Amine*
- ✓ Add **DEA** under inflows
- \checkmark Set the target pH = 7.5
- ✓ Select **DEA** as the pH Base Titrant
- ✓ Click Calculate

- ✓ Select the **Neutralizing with Amine** Calculation
- ✓ Right click on it and Add as Stream
 - Name it: Acid Gas Neutralized w\DEA
 - Select the aqueous phase only
- ✓ Go to the Add Calculation button and select Corrosion Rates
 - Select Single Point Rate
 - Name it: CS 1018 CR neutralized
- ✓ Flow Type: Static
- ✓ Select Carbon Steel 1018 as the Contact Surface
- ✓ Click Calculate
- ✓ Go to the General Corrosion tab and Polarization Curve tab
- ✓ Do the same for 13%Cr Stainless Steel

Corrosion Rates and Propensity to Localized Corrosion

Oilfield Produced Water on Corrosion Systems, inc.

- **Oxygen** in **produced water** can attack the films that passivate the steels.
- The Corrosion Analyzer will be used to:
 - Enter ionic inputs
 - Model the effects of chlorides and oxygen on the rates of uniform corrosion, and the propensity of pitting (localized corrosion)

1. Adding a Water Analysis

- Add a Water Analysis Add Water Analysis
 - Rename it *Produced Water*
- Select the **AQ** Framework
- Enter the data given in the table to the right \rightarrow
- Go to the Add Reconciliation button
 - Rename it *Deaerated Produced Water*
- Select No Reconcile option
- Click Calculate
- Go to the **Summary** section and **Report** tab

Produced Water Composition

Variable	Value
Analysis Pa	
Stream Amount (L)	1.00000
Temperature (°C)	25.0000
Pressure (atm)	1.00000
Recorded P	roperties
Total Dissolved Solids (mg/L)	0.0
Measured pH	8.10000
Measured Alkalinity (mg HCO3/L)	0.0
Measured TIC (mol C/L)	0.0
Density (g/ml)	0.0
Specific Electrical Conductivity (µmho/cm)	0.0
	(mg/L)
H2O	
C02	0.0
H2S	0.0
Si02	51.0000
B(OH)3	33.0000
×	
	; (mg/L)
P as PO4-3	0.0
Si as SiO2	0.0
B as B(OH)3	0.0
Cations	(mg/L)
Na+1	10550.0
K+1	380.000
Ca+2	400.000
Mg+2	1270.00
Sr+2	13.0000
Ba+2	0.0500000
Fe+2	0.080000
CI-1	19150.0
S04-2	2500.00
HCO3-1	144.000
HS-1	0.0
C2H3O2-1	0.0

Report Tab

Reconciliation Summary

Reconciliation Summary

Stream Inflows Charge Balance

Jump to:

🛷 Description 🕺 Reconciliation 🛃 Molecular Basis 🔯 Report

🙆 🔍 🔍

Customize

Export

Reconciliation Summary

Shows a comparison between the measured and calculated properties, in this case it shows the measured vs calculated pH

Stream Inflows

Summarizes all the species that were entered in the water analysis grid

Charge Balance

Contains the concentrations entered and the final balanced values

Scaling Tendencies

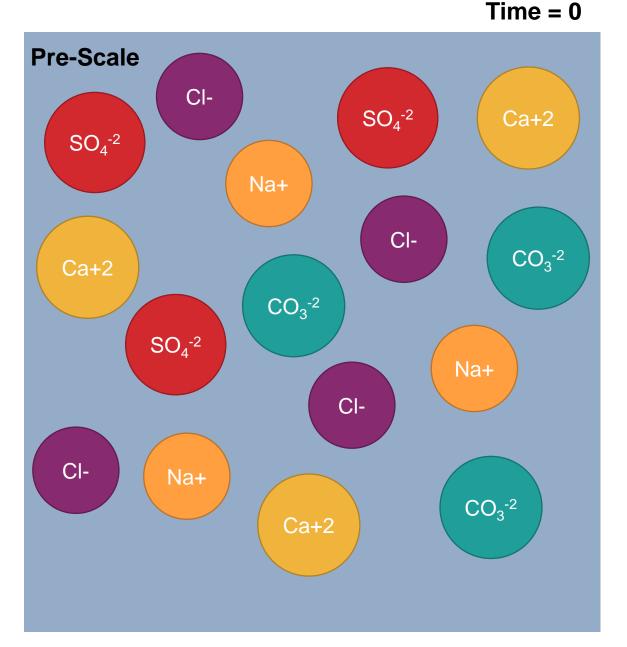
Shows the saturation ratios

		Measured	Calculate
Temperature, °C	25.0000		
Pressure, atm		1.00000	
pH		8.10000	7.53
Alkalinity, mg HCO3/L		170.000	167
Density, g/ml Water, mg/L			9.8763
	Input	Output	
Species	Input mg/L	Output mg/L	
•	-		
H2O	mg/L	mg/L	
H2O SiO2	mg/L 1.00000e6	mg/L 9.87645e5	
H2O SiO2 Cl-1	mg/L 1.00000e6 5.00000	mg/L 9.87645e5	
H2O SiO2 CI-1 SO4-2	mg/L 1.0000066 5.00000 18980.0	mg/L 9.87645e5	
H2O SiO2 CI-1 SO4-2 Br-1	mg/L 1.00000e6 5.00000 18980.0 2648.30	mg/L 9.87645e5	
H2O SiO2 Cl-1 SO4-2 Br-1 B(OH)4-1	mg/L 1.00000e6 5.00000 18980.0 2648.30 65.0000	mg/L 9.87645e5	
H2O SiO2 Cl-1 SO4-2 Br-1 B(OH)4-1 F-1	mg/L 1.00000e6 5.00000 18980.0 2648.30 65.0000 33.5500	mg/L 9.87645e5	
H2O SiO2 CI-1 SO4-2 Br-1 B(OH)4-1 F-1 I-1	mg/L 1.00000e6 5.0000 18980.0 2648.30 65.0000 33.5500 1.40000	mg/L 9.87645e5	
SiO2 CI-1 SO4-2 Br-1 B(OH)4-1 F-1 I-1 HCO3-1	mg/L 1.00000e6 5.00000 18980.0 2648.30 65.0000 33.5500 1.40000 0.0500000	mg/L 9.87645e5	
H2O SiO2 CI-1	mg/L 1.00000e6 5.0000 18980.0 2648.30 65.0000 33.5500 1.40000 0.0500000 144.000	mg/L 9.87645e5	
H2O SiO2 Cl-1 SO4-2 Br-1 B(OH)4-1 F-1 I-1 HCO3-1 Na+1	mg/L 1.00000e6 5.00000 18980.0 2648.30 65.0000 33.5500 1.40000 0.0500000 144.000 10561.0	mg/L 9.87645e5	

Scaling Tendencies

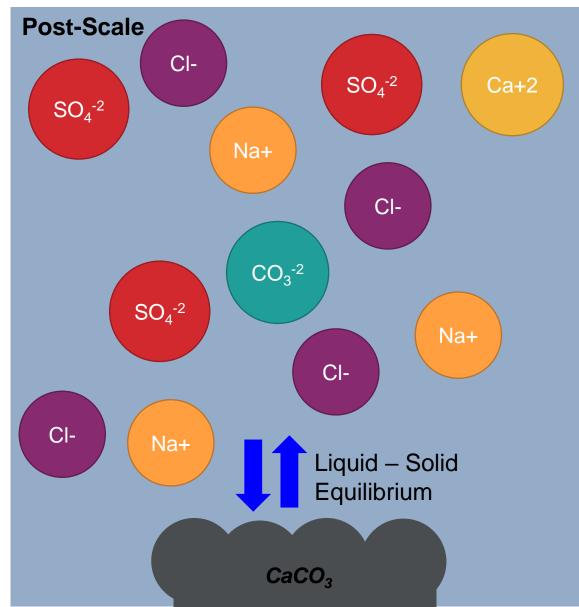
The Scaling Tendency (ST) is the ratio of the Ion Activity Product (IAP) to the solubility product constant (K_{sp}) .

Scale Tendency = $S_{mineral} \cong \frac{C}{C_0} = \frac{IAP}{K_{sp}}$


Where

- C = measured concentration
- C_0 = concentration at equilibrium
- IAP = ion activity product
- K_{sp} = Thermodynamic Solubility Product Constant

Thus,


- ST < 1 Indicates sub-saturation, and the solid is not expected to form
- ST = 1 Indicates saturation, and the solid is in equilibrium with water
- ST > 1 Indicates supersaturation, and solids will form

Post-Scaling Tendency (after solids precipitate)

Systems, inc.

Scaling Index

The Scale Index (SI) (aka: Saturation Index in the literature), is given by the following relationship:

$$SI = log_{10}\left(\frac{IAP}{K_{sp}}\right)$$

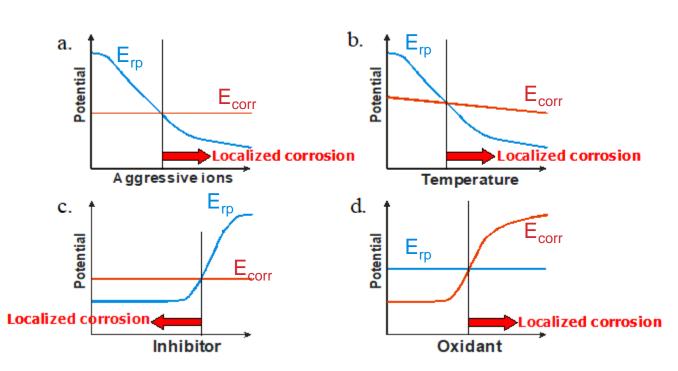
Note:

• The Scaling Index (SI) is reported in the software as SI, Index.

Thus,

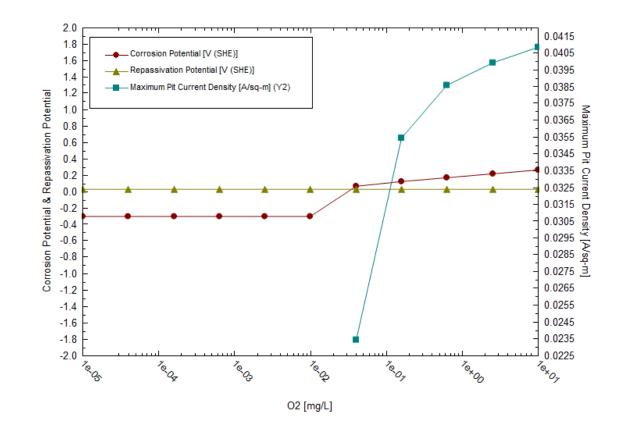
- SI < 0 Indicates sub-saturation, and the solid is not expected to form
- SI = 0 Indicates saturation, and the solid is in equilibrium with water
- SI> 0 Indicates supersaturation, and solids will form

2. Corrosion Rate Calculation Corrosion of Carbon Steel in a Deaerated Produced Water Solution


Select the Molecular Deaerated Produced Water	
Charge value as to my CCF, and summer density to w A/am ²	
Change voltage to mV SCE , and current density to µA/cm²	
 Go to the Add Calculation button and select Corrosion Rates Rename it Carbon Steel 	(
Flow Type: Pipe flow	
 Leave the default values for velocity and pipe diameter 	
Select Carbon Steel 1018 as the Contact Surface	
 A drop-down arrow will show the different alloys in the database 	Γ
	[
Change to survey by Temperature	1
 Range T = 25 - 50°C; steps = 15 	Super13
Click Calculate	Su
Depend the same stope for Steipless Steel 204	Su
Repeat the same steps for Stainless Steel 304	
Go to the General Corrosion tab to analyze the corrosion rates	

ys
Ni
Alloy 600
Alloy 690
Alloy 825
Alloy 625
Alloy C-276
Alloy C-22
Alloy 28
Alloy 29
Alloy 2335
Alloy 2550
Cu
CuNi 9010
CuNi 7030

Predicting Localized Corrosion

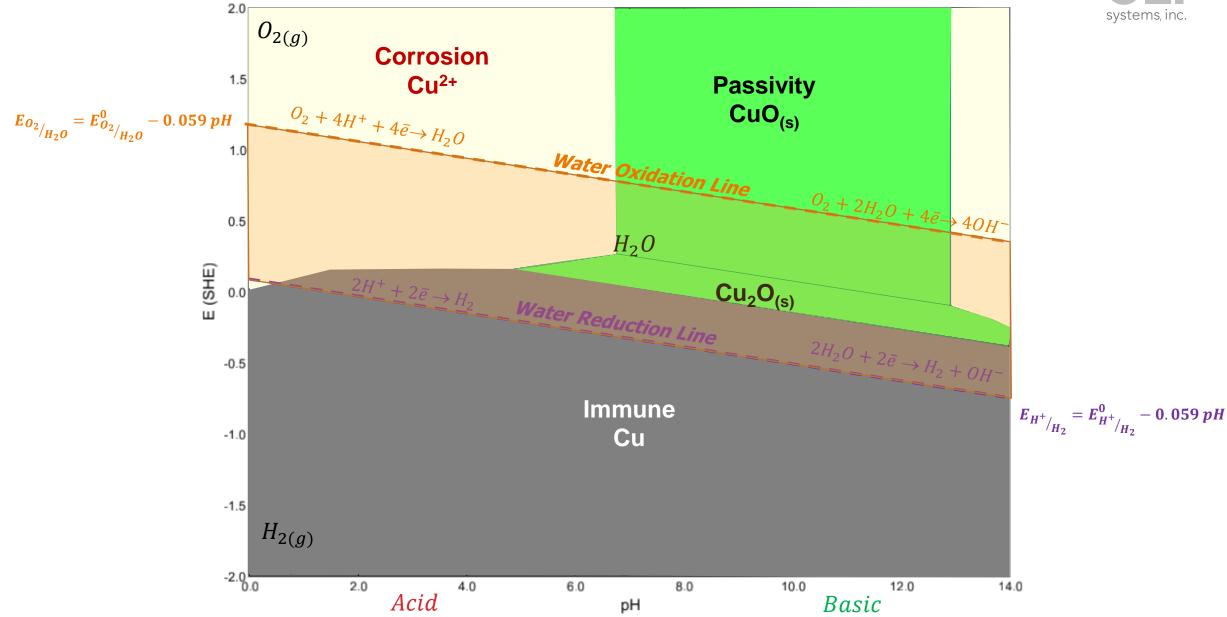

- Corrosion Potential (E_{corr}): Also known as open-circuit potential or rest potential. It is the potential at which the rate of anodic dissolution of the electrode equals the rate of cathodic reactions and there is no net current flowing in or out of the electrode.
- Repassivation Potential (E_{rp}): The repassivation potential (also called protection potential) is the potential at which a stably growing pit or crevice corrosion will cease to grow. Thus, localized corrosion cannot occur at potentials below E_{rp}.
- The E_{rp} can be compared to the E_{corr} in the same environment to determine the alloy's susceptibility to localized corrosion.
 - The arrow represents the region where $E_{corr} > E_{rp}$
 - The wider the E_{corr} E_{rp} difference, the greater the propensity for localized corrosion

3. Corrosion Rate Calculation Corrosion of Carbon Steel in an Aerated Produced Water Solution

- Create a new the Molecular Deaerated PW stream
- Label it Molecular Aerated PW
- Change the Temperature to 35°C
- Add **Oxygen** to the stream
- Change Units
 - Units manager Metric | Batch | Conc.
- Add a corrosion rate calculation and label it Carbon Steel + 02
- Select Pipe Flow and leave the default values
- Select the Carbon Steel 1018 as the contact surface
- Change to survey by **Composition**
 - Click on the specs...button and select O2
 - Survey Range T = 1e-5 10 ppm by 10 steps; Select log scale
- Click Calculate
- Repeat the same steps for Stainless Steel 304
- Go to the General Corrosion tab and localized corrosion tab to see results

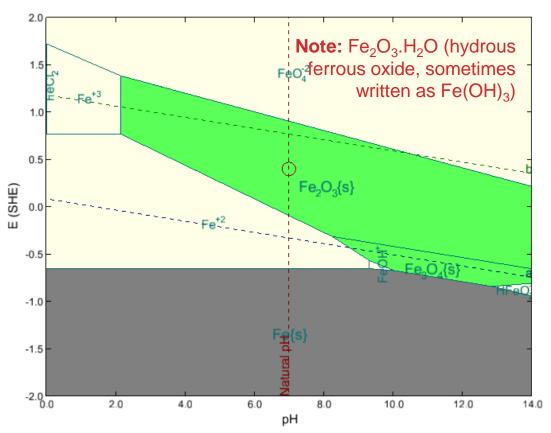
Pourbaix diagram

Real-solution Stability Diagrams


- Incorporates an accurate coefficient model for multicomponent systems (AQ, MSE, MSE-SRK thermodynamic models)
- Adds the ability to construct stability diagrams in wide range of T, P and concentrations of species
- Allows you to choose a solution component as an independent variable, so that the effect of any solution components can be studied explicitly
- Uses realistically modeled acids and bases to vary solution pH

Picture Courtesy: Introduction to Corrosion Science by E. McCafferty 71

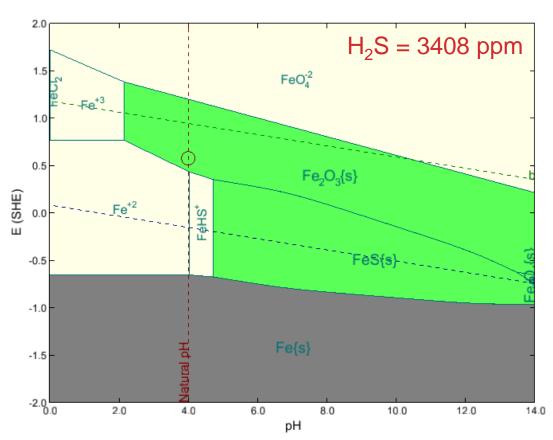
Pourbaix Diagram of Cu in H₂O at 25 °C and 1 atm



Stability Diagram of Fe in Water a.k.a. Pourbaix Diagram

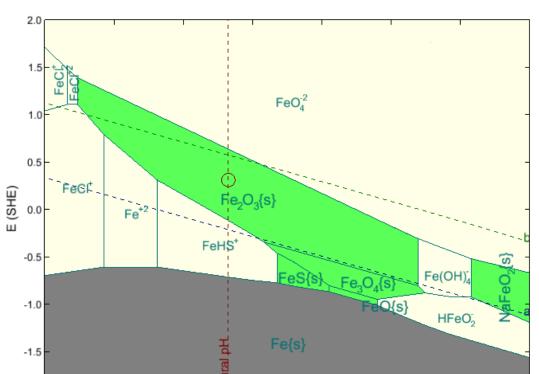
- Add a new Stream
 - Rename it Fe Pourbaix Diagram
- Select the **AQ** Framework
- Go to the Add Calculation button and select Stability Diagram
 - Or go to the Actions Panel and select the Stability Diagram icon
- Rename it Fe-H2O system
- Add Fe as the Contact Surface
 - Show ORP and no Aqueous lines
- Click Calculate
- Go to the Stability Diagram tab

Fe-H2O system



Note: The **Re** button is turned ON by default when selecting the Stability diagram calculation

Stability Diagram of Carbon Steel Effect of H₂S


- Go to Add Calculation button and select Stability Diagram
- Rename it Fe-H2S-H2O system
- Add Fe as the Contact Surface
- Add 1e-4 moles of H2S (3.4 ppm)
- Click Calculate
- Go to the Stability Diagram tab

Fe-H₂S-H₂O System

Stability Diagram of Carbon Steel Effect of H₂S and Temperature

- Go to Add Calculation button and select Stability
 Diagram
- Rename it Fe-H2S-H2O vs T system
- Add Fe as the Contact Surface
- Add 1e-4 moles of H2S
- Temperature and Pressure conditions
 - 25°C 1 atm
 - 80°C 1 atm
 - 250°C 60 atm
- Click Calculate
- Go to the Stability Diagram tab

6.0

4.0

8.0

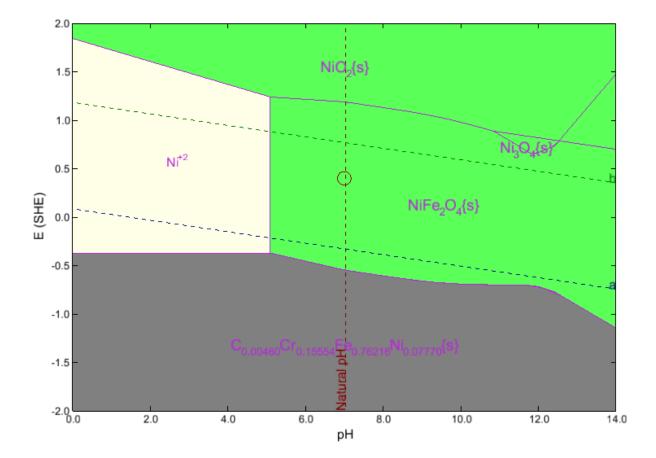
pН

10.0

12.0

14.0

-2.0


2.0

250°C, 60 atm

Stability Diagram of 304SS Multiple Solvents

- Add a new Stream
 - Rename it Solvents
- Select the MSE Framework natural choice
- Add Methanol, Ethanol, and 1,2-Ethanediol (Ethylene glycol)
- Set the Water value to 0
- Go to the Add Calculation button and select Stability Diagram
- Rename it 304SS-MeOH system
- Set the Methanol inflow to 100 moles
- Add 304 as the Contact Surface
- Click Calculate
- Go to the Stability Diagram tab

Repeat the same steps for Ethanol and Ethylene glycol

